Screening for trisomy 21 in Denmark; Evaluation of the current and possible future strategies

PhD thesis
Charlotte Kvist Ekelund
Academic supervisors
Ann Tabor, professor, DMSc, Department of Fetal Medicine, Rigshospitalet, University of Copenhagen
Olav Bjørn Petersen, PhD, consultant, Department of Obstetrics, Aarhus University Hospital
Ida Vogel, DMSc, Head of Department of Clinical Genetics, Aarhus University Hospital

Evaluation committee
Katja Bilardo, Professor, Head Fetal Medicine Unit, Department of Obstetrics & Gynaecology, University Medical Center Groningen, The Netherlands
Michael Christiansen, Head of Molecular Diagnostics, Statens Serum Institute, Copenhagen
Lone Krebs, DMSc, Associate professor, consultant, Department of Gynecology and Obstetrics, Holbæk Sygehus, University of Copenhagen

The PhD defence will take place Friday the 13th of April 2012, Auditorium B, Teilum, Rigshospitalet, Copenhagen.
Acknowledgement

This thesis was made possible by help from a number of fantastic supervisors and colleagues.

First and foremost, I owe my deepest thanks to Professor Ann Tabor. Thank you for sharing your interest and knowledge in first trimester screening with me, for your professional and personal guidance, for always having time and for showing your confidence in me from the very beginning of the project. Your constructive and focused attitude is admirable and to me you have been an extremely inspiring mentor within all aspects of life.

I am greatly indebted to Olav Bjørn Petersen, MD, PhD, one of the most enthusiastic and optimistic persons I know. Your positive attitude, support and encouragement have really helped me through the challenging phases of the project. And my sincere thanks to Ida Vogel, MD, DMSc for taking part in the project, for everything you taught me many years ago and for still being there.

I also want to thank my many co-authors for their contribution and cooperation. I have appreciated meetings and email correspondence with you all, and your help in collecting data and preparing manuscripts has been extremely valuable. Thanks to all departments which have contributed with important data for the national studies, and to the Fetal Medicine Departments at Hvidovre Hospital and Aarhus University Hospital for recruiting patients for the projects.

At Rigshospitalet I would like to thank all my great and hardworking colleagues (secretaries, nurses, midwives and doctors) at the Fetal Medicine Department for all your extraordinary help in recruiting and scanning the pregnant women, for giving me reasons to escape from the computer and for all your time invested in teaching me how to scan.

I have had the privilege and pleasure to meet and work with the most inspiring international experts within the field of first trimester screening; Professor Jon Hyett, Royal Prince Alfred Hospital, University of Sydney and Professor Dave Wright and his group, University of Plymouth. Thank you for your sharing of knowledge, statistical help and hospitality.

I am most grateful to Jan Hansen (Danish Cytogenetic Registry) and Steen Rasmussen (National Board of Health) who have both contributed significantly with national outcome data. Your always flexible support has been very much appreciated.

I want to thank all my fantastic friends from the PhD office at Rigshospitalet for being an important and highly valuable part of my life for 4 years. It has been a true pleasure and comfort to share laughter and tears, victories and defeats with you.

Finally, I want to thank my family and friends for their interest and support.
And to Kim, Clara and Sofie: I love you so much.

Charlotte Kvist Ekelund
Copenhagen, March 2012
Content

Preface and aims.. 3
List of abbreviations .. 4
Introduction ... 5

Background ... 6

Prenatal diagnosis and screening for chromosomal abnormalities .. 6
 Prenatal diagnostic tests .. 6
 Prenatal screening tests .. 7
 Prenatal screening tests for trisomy 21 10
 National guideline on prenatal screening 12

First trimester combined screening for trisomy 21 ... 14
 Nuchal translucency ... 14
 Biochemical markers .. 17
 Combined first trimester screening performance 19
 Alternative screening models 22
 Screening for other trisomies 23
 Quality control .. 24
 New biochemical markers 25
 New ultrasound markers .. 26

Other advantages of first trimester screening 29

Ethical aspects, women’s attitude and choice 31

Epidemiological research in Fetal Medicine 33

Own studies .. 35

 Paper 1 .. 35
 Paper 2 .. 37
 Paper 3 .. 39
 Paper 4 .. 41

Conclusion and future perspectives 43

Summary in English .. 45

Dansk resume .. 47

References .. 49

Appendices (paper 1-4) ... 67
Preface and aims

The present Ph.D. thesis is based on work carried out during my employment as a research fellow at the Department of Fetal Medicine, Rigshospitalet, Copenhagen University Hospital, Denmark during the period 2007-2011. The work was primarily supervised by professor, DMsc Ann Tabor, Department of Fetal Medicine, Rigshospitalet, Copenhagen. Head of Fetal Medicine Unit, Ph.D. Olav Bjørn Petersen and Head of Department of Clinical Genetics, DMSc Ida Vogel, Aarhus University Hospital have in addition contributed to the scientific plan and collection of data.

The Ph.D. thesis is based on the following original papers

IV. **Screening performance for trisomy 21 comparing first trimester combined screening and a first trimester contingent screening protocol including ductus venosus and tricuspid flow.** Ekelund CK, Petersen OB, Sundberg K, Pedersen F, Vogel I, Tabor A. Submitted October 2011 to Prenatal Diagnosis. Currently undergoing revision.

The aims of the Ph.D. thesis were:

1. To evaluate the first trimester combined screening programme for trisomy 21 in Denmark implemented following the new national guideline in 2004
2. To assess whether the national screening programme for trisomy 21 has changed the gestational age at which trisomy 18 and trisomy 13 are detected
3. To investigate if access to a double set of the maternal serum markers PAPP-A and free β-hCG can improve screening performance
4. To compare routine first trimester screening for trisomy 21 with a contingent screening protocol including two new ultrasound markers; abnormal ductus venosus flow and tricuspid regurgitation.
List of abbreviations

AC: Amniocentesis
ADAM 12: A Disintegrin And Metalloprotease 12
AFP: Alpha Foeto Protein
CRL: Crown Rump Length
CVS: Chorionic villus sample
DR: Detection rate
FPR: False positive rate
FMF: Fetal Medicine Foundation
Free β-hCG: Free beta human Chorion Gonadotrophin
IGF: Insulin-like-growth-factor
IGFBP-4: Insulin-like-growth-factor-binding-protein-4
LMP: Last Menstrual Period
LR: Likelihood Ratio
MoM: Multiple of the Median
NT: Nuchal Translucency
OSCAR: One Stop Clinic for Assessment of Risk
PAPP-A: Pregnancy-Associated-Plasma-Protein-A
SP1: Schwangerschafts Protein 1
Introduction

In 2004 the Danish National Board of Health issued a new guideline on prenatal screening. In contrast to the previous guideline from 1994 the new guideline recommended that all pregnant women should be offered information about prenatal examinations in pregnancy. The optional prenatal examinations were a screening test for trisomy 21 (Down syndrome) in the first trimester of pregnancy (the combined test; a nuchal translucency scan and a blood test) and a scan in the second trimester (malformation scan). The new guideline was well accepted by local politicians, hospitals administrators, doctors and the pregnant women. The new guideline was implemented gradually over the next 1½ year and by June 2006 the screening programme was considered an offer to all Danish pregnant women.

This Ph.D. thesis focuses on the implemented first trimester screening programme for trisomy 21. Our aim was to follow up on the impact of the new screening strategy in terms of performance of the programme in a national cohort. In addition we wished to explore if additional ultrasound and biochemical markers could potentially improve the screening performance of the programme.

The background section of the Ph.D. thesis presents the overall principles of prenatal screening. Emphasis is placed on the first trimester combined screening which is now the offer to pregnant women in Denmark. Review of relevant literature on ultrasound and biochemical markers used in screening for trisomy 21 is presented. The unique tools available for performing epidemiological research in Denmark are discussed in the section on epidemiological research in fetal medicine and are followed by presentation and discussion of results from the four papers, on which the thesis is based.
Background

Prenatal diagnosis and screening for chromosomal abnormalities

Prenatal diagnostic tests
Chromosomal abnormalities are the leading cause of developmental delay in children and trisomy 21, trisomy 18, trisomy 13 and sex chromosome aberrations are the most commonly occurring chromosomal abnormalities. Researchers have during the last 30 years worked intensively to develop a non-invasive prenatal diagnostic test for chromosomal abnormalities. Progress has been made by using techniques which examine fetal cells or cell-free fetal DNA/RNA in maternal plasma.

It may become possible in the coming years to diagnose a fetus with trisomy 21 by examining the maternal blood, but currently, the only available diagnostic tests we can offer the pregnant women are one of two invasive diagnostic tests; amniocentesis (AC) or chorionic villus sample (CVS). The tests are based on direct collection of fetal or placental cells followed by a diagnostic chromosome analysis.

Amniocentesis was the first diagnostic invasive test to be introduced more than 40 years ago. It was traditionally performed blindly around gestational week 16-17, but during the 1970’ies and 80’ies it became more and more common to perform the test under ultrasound guidance as first described by Bang et Nordtheved. The procedure related risk of pregnancy loss associated with AC is 1%. Attempts have been made to offer AC at earlier gestational ages, but an increased risk of fetal loss and higher incidence of club feet have been reported. The recommendations therefore remain not to perform the procedure until week 15+3.

Chorionic villus sampling was developed in the 1980’ies as an alternative to AC and has become a widely used method for prenatal diagnosis in the first trimester. It can be done from week 10+0 either transabdominally or transcervically. Before gestational week 10 there may be an increased risk of limb reduction defects. Transabdominal CVS is reported to have a pregnancy loss rate comparable to AC performed in the second trimester, while transcervical CVS is likely to be associated with a significantly higher risk of miscarriage. The transabdominally performed CVS has therefore become first choice in the majority of fetal medicine centres performing prenatal invasive tests, as access to early diagnosis is preferred by most women. In addition to the information on 1% miscarriage risk pre-test counselling should also include information about a 1% risk of receiving an inconclusive result from a CVS. The placenta can in some cases contain an abnormal cell line not present in the fetus (named placental mosaicism). In any cases with a CVS...
mosaicism result it is thus recommended to perform an AC in order to determine if the mosaicism is
carried by the placenta or also present in the fetus.10

Traditionally collection of fetal or placental cells by AC or CVS has been followed by conventional
karyotyping of long term cultured cells. This test provides the夫妇 with the fetal karyotype in
approximately 2 weeks. Fortunately during the last decade rapid targeted aneuploidy testing has
been widely implemented in routine prenatal diagnosis. Methods like interphase fluorescence in-
situ hybridization (iFISH), quantitative fluorescence polymerase chain reaction (QF-PCR) and
multiplex ligation-dependent probe amplification (MLPA) can within 24-48 hours detect aneuploidy
of chromosome 13, 18, 21 and X and Y in prenatal samples. They have become a reliable
supplement to the conventional karyotyping.18,19

Prenatal screening tests
Invasive tests are costly and they pose as described above an inherent risk of procedure-related
complications including fetal loss. It thus seems reasonable to reserve prenatal diagnostic tests to
pregnancies with a high risk of chromosomal abnormalities. Prenatal screening tests have
consequently been developed to identify women with high risk pregnancies, for whom the offer of
invasive testing would be appropriate.

Screening has been defined by Wald and Cuckle as “the systematic application of a test, to identify
subjects at sufficient risk of a specific disorder to benefit from further investigation or direct
preventive action, among persons who have not sought medical attention on account of symptoms
of that disorder.”20

To assess the performance and to compare different screening tests it is essential to know how well
the tests discriminate affected from unaffected individuals. For this purpose the detection rate
(proportion of affected individuals yielding a positive result) and false positive rate (proportion of
unaffected individuals yielding a positive result) have to be calculated or estimated. The screen
positive rate is also often used when assessing the performance of screening for chromosomal
abnormalities, as this is an easy parameter to monitor without having access to the final outcome
of the pregnancy. In prenatal screening where the prevalence of any chromosomal abnormality is
low, the false positive rate and screen positive rate are often quite similar. In screening for
chromosomal abnormalities the screen positive rate directly reflects the proportion of pregnant
women who will be offered a diagnostic invasive test. Thus the screen positive rate is, in cases
where screen positive women prefer to continue with an invasive test, an indirect measurement of the invasive testing rate.

It is also useful to calculate or estimate “the odds of being affected given a positive result” (OAPR) for the screening test, which is the ratio of the number of true positives to the number of false positives.

Unlike the detection rate and false positive rate the OAPR is dependent on the prevalence of the disorder being screened for, and is thus not a property related only to the test itself but a parameter dependent on the population in which the test is applied. Figure 1 shows the terms and calculations used in describing performance of screening tests.

\[
\begin{array}{|c|c|c|}
\hline
& \text{Affected} & \text{Unaffected} \\
\hline
\text{Test positive} & a & b & a+b \\
\hline
\text{Test negative} & c & d & c+d \\
\hline
& a+c & b+d & a+b+c+d \\
\hline
\end{array}
\]

Figure 1: Definition of screening performance parameters

The OAPR can also be calculated using the so called likelihood ratio (LR). The LR is given as the detection rate divided by the false positive rate, and the OAPR is expressed as the prevalence of the disease multiplied by the LR. In screening tests a cut off is often used to divide the screened population into “screen positive” and “screen negative”. If high levels of a marker may be related to disease individuals with a test value above a certain level has increased risk of disease and are defined as screen positive. Individuals with a test level below the cut off will be referred to as screen negative. The detection rate, false positive rate and screen positive rate of the test are directly dependent on the chosen cut off. By looking at frequency distribution curves for affected and unaffected individuals for the
specific disorder the effect on screening performance when changing the cut off can be viewed as shown in figure 2A and 2B.

Figure 2: Gaussian relative frequency distribution curves for an imaginary screening marker in unaffected and affected fetuses. A and B show how detection and false positive rate are dependent on cut off. If screen positive is defined as having a value of 6 or above (figure 2A) $\frac{3}{4}$ of affected fetuses are detected, but a relatively large proportion of unaffected will be screened positive (high detection rate and high false positive rate). If the cut off is defined as 7 (figure 2B), the false positive rate will decrease at the expense of a decrease in detection rate.

Figure 3: Gaussian relative frequency distribution curve. The likelihood ratio for a value of 6 is given by dividing the height of distribution curve for affected at this value (A) by the height of the unaffected curve (B). LR (value 6) = A/B

In many screening tests the screening variable is continuous, and then the calculated OAPR is not individualised, as it refers to the risk of being affected given the person has any value above the defined cut off. Using the frequency distribution curves it is possible to calculate individual LR for each possible test value and thereby provide an individual odds of being affected given that specific test result (figure 3). The specific LRs can in combination with a defined pre-test risk provide an exact post-test risk by using Bayes theorem. The principle is outlined in figure 4. If two screening variables/tests are not correlated the LRs can be multiplied to give a combined risk assessment based on more than a single test (figure 4).
In cases where the tests are correlated this can be taken into account thus requiring more advanced mathematics22.

When screening for fetal chromosomal abnormalities the pre test risk is a known risk based on the maternal age and gestational age at time of screening (table 1). Screening variables can e.g. be proteins or hormones measured in maternal blood (biochemical markers) or anatomical variations measured by ultrasound (ultrasound markers), for which mean values of their respective normal distributions differ in unaffected and affected pregnancies. Thus the post test risk can e.g. be calculated as shown in figure 423,24.

\[
\text{Pre test risk} \times \text{LR test}_1 = \text{Post test risk}
\]

\[
\text{Pre test risk} \times \text{LR test}_1 \times \text{LR test}_2 = \text{Post test risk}
\]

\[
\text{Maternal age risk} \times \text{LR}_{\text{NT}} \times \text{LR}_{\text{PAPP-A}} \times \text{LR}_{\text{free beta hCG}} = \text{Risk for trisomy 21}
\]

Figure 4: Bayes theorem for one or two screening variables/tests and when used in prenatal screening programmes23,24.

\textbf{Prenatal screening tests for trisomy 21}

The risk of carrying a fetus with trisomy 21, 18 or 13 increases with increasing age of the mother. This association has been known since 193325. In addition the risk is higher early in pregnancy compared to the risk around gestational week 40. This is due to a relatively high loss rate of fetuses with chromosomal abnormalities during pregnancy26 (table 1).

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
\textbf{Maternal age} & \textbf{12} & \textbf{16} & \textbf{20} & \textbf{40} \\
\hline
20 & 1:1068 & 1:1200 & 1:1295 & 1:1527 \\
25 & 1:946 & 1:1062 & 1:1147 & 1:1352 \\
30 & 1:626 & 1:703 & 1:759 & 1:895 \\
35 & 1:249 & 1:280 & 1:302 & 1:356 \\
40 & 1:68 & 1:76 & 1:82 & 1:97 \\
\hline
\end{tabular}
\caption{Estimated risk for trisomy 21, modified from "the 11-13+6 week scan" book, with permission from FMF.}
\end{table}
As the invasive diagnostic tests were introduced in the 1970’ies screening for trisomy 21 using **maternal age** alone as a screening variable for chromosomal abnormalities began\(^27\). In Denmark this screening strategy offering pregnant women aged ≥ 35 years an invasive diagnostic test was recommended by the Danish National Board of Health up to 2004\(^28\). The screening performance using this strategy has been estimated to have a detection rate of 37%, a false positive rate of 10.6 % with an OAPR of 1:175 (calculated based on maternal age distribution 1998 in the Danish population), which is considered as a rather poor performance for a screening test \(^29\). As the false positive rate is almost the same as the screen positive rate, and if age was used as the only screening variable more than 10% of the pregnant women would be considered screen positive and therefore be offered an invasive diagnostic test. In Denmark where approx. 65,000 women are pregnant each year\(^30\) it would be equivalent to 6-7000 invasive tests per year and consequently approximately 60-70 procedure related fetal losses. When screening for chromosomal abnormalities the screen positive rate should be as low as possible to keep the number of invasive tests at a minimum.

In the 1980’ies serum screening tests for trisomy 21 in the second trimester of pregnancy were developed and in 1988 Wald et al. described the **triple test**, combining maternal age with three biochemical markers (Alfa Foeto Protein (AFP), estradiol and human Chorionic Gonadotrophin (hCG)) \(^31\). The screening performance for the triple test was much better than using maternal age alone and it was reported by Wald et al. to have a DR of 60% for a false positive rate of 5%\(^31\). In some parts of Denmark in the 1990’ies the triple test was offered routinely so to women aged < 35 years with results as least as good as predicted by models and shown in studies from centres in other countries\(^32;33\).

In the beginning of the 1990’ies after the CVS was introduced as a diagnostic invasive procedure which could be performed in the first trimester of pregnancy, the **first trimester screening tests** followed accordingly. Pregnancy associated plasma protein A (PAPP-A) and free β human chorionic (free β-hCG) were described as first trimester markers for trisomy 21\(^34;35\) and around the same time the nuchal translucency (fluid accumulated in the posterior region of fetal neck) in the first trimester and its relation to chromosomal abnormalities was described\(^36\).

There was now a wide variety of screening tests available based on serum markers alone or on the combination of ultrasound and serum markers, and screening performance was reported to be significantly better than performance based on the maternal age criteria\(^27\). In Denmark there was a
strong professional wish for revision of the current national standards of prenatal screening and a working group under the Danish National Board of Health was established. In 2003 they issued a report including their recommendations. As part of their work they compared the different screening strategies at hand at that time by using a standardised population of Danish pregnant women and available data from published work on the markers (statistical method as described by Wald et al. 1988). The screening performance for different screening strategies is shown in figure 5.

![Figure 5: Receiver operating curves for different screening strategies for trisomy 21](image)

National guideline on prenatal screening

In 2004 the Danish National Board of Health issued a new guideline on prenatal screening and diagnostics. The guideline was based on the report “prenatal diagnostics and risk assessments” from 2003 by the group referred to above.

Four major changes compared to the previous guideline were introduced.

- The guideline recommends that all pregnant women should have the offer of getting more information about prenatal screening and possible tests; “informed choice”, instead of
sorting into high risk/low risk automatically by age without involving the pregnant woman herself.

- The guideline opens up for all pregnant women to have the choice of a risk assessment for trisomy 21 performed based on ultrasound scanning and measurement of two biochemical markers in the first trimester (the first trimester combined screening test).
- The importance of information about the possibilities of getting support through patient organisations in case a fetus is diagnosed with any abnormality is emphasized.
- The guideline focuses on follow up and measurement of the quality of the prenatal information, examinations and tests provided to the pregnant women.

The above listed changes were explained as a logic consequence of availability of new screening tests, which seemed superior to using the age criterion. In addition respect for the patients’ autonomy and a need for lowering the number of prenatal invasive tests in Denmark were given as reasons for change in recommendations.

The guideline was well accepted by the pregnant women, the obstetricians and the politicians. The offer of first trimester combined risk assessment was gradually implemented all over the country. Training of sonographers and establishment of logistics around the collection of blood samples were initiated. In June 2006 all pregnant women in Denmark could choose to have a risk assessment for trisomy 21 performed using the first trimester combined screening strategy. Denmark was one of the first countries in the world to reach a national consensus on prenatal screening including the offer of a free of charge first trimester combined screening test to all pregnant women.

In the following background section of the thesis a more detailed description of the first trimester combined screening test and its components is provided and possible new ways to improve the screening test are presented.
First trimester combined screening for trisomy 21

The first trimester combined screening test for trisomy 21 consists of one ultrasound marker; the nuchal translucency measurement and two independent biochemical markers measured in maternal blood; pregnancy associated plasma protein A (PAPP-A) and the free β-human Chorionic Gonadotrophin (free β-hCG).

Nuchal translucency
All fetuses have a small translucent area in the posterior region of the fetal neck which is easily visualised using ultrasound. It was originally observed when performing ultrasound examinations in the second or third trimester of pregnancy, named cystic hygroma or nuchal edema and was found to be related to malformations and chromosomal abnormalities36-39.

In 1992 Nicolaides and co-workers introduced the term nuchal translucency (NT) as an accumulation of fluid behind the fetal neck in the first trimester (figure 6) and described the association between the thickness of the NT and abnormal fetal karyotype40. They reported that in a group of fetuses with an NT >3 mm 35% had a chromosomal abnormality in contrast to the group with an NT of less than 3 mm, where only 1% were chromosomally abnormal.

In addition increased fetal NT has been demonstrated to be associated with cardiac malformations as first described by Hyett et al.41, as well as many other fetal abnormalities and genetic syndromes42-45. In fetuses with increased NT the risk of an adverse outcome increases with increasing NT thickness. The risk of adverse outcome in fetuses with an NT ≥ 6.5mm is reported to be around 80-85%44,45. It should be emphasized though that also a normal fetus can have a thick
nuchal translucency in the first trimester. If the karyotype is normal and the follow up scans including expert heart assessment and an anomaly scan in the second trimester do not reveal any features of abnormal development or malformations the chance of good pregnancy outcome is similar to that of the general population44-46. Follow-up of children with regards to neuropsychological development has been performed. The two studies which include a control group both report that children with increased NT (>3.5mm) at the age of 2 years have normal infant development47,48.

The heterogeneity of the conditions associated with increased fetal NT suggests that the underlying etiology of the fluid accumulation is multifactorial and is in spite of extensive research not yet fully elucidated. Possible mechanisms include cardiac failure in association with abnormalities of the heart and great arteries49-51, venous congestion in the head and neck caused by constriction of the fetal body (as seen in diaphragmatic hernia and skeletal dysplasias)52,53, altered composition of the extra cellular matrix (many of the components are encoded by genes on chromosome 21, 13 and 18)54,55 and abnormal or delayed development of the lymphatic system56.

Since the first reports on the association between NT and chromosomal abnormalities a large number of reports have confirmed the association, and thus provided the basis for using NT as an ultrasound marker for chromosomal abnormalities57. The initial association studies were quickly followed by prospective interventional studies in specialised centres, in which different NT cut offs were used to describe detection rates and false positives rates in relation to trisomy 21 in a screened study population57. The studies showed that measurement of the NT was feasible in > 99% of pregnancies57. When combining data from the studies having more than 200,000 screened pregnancies with 871 cases of trisomy 21 it was demonstrated that increased nuchal translucency in combination with maternal age can identify >75% of cases with trisomy 21 for a false positive rate of 5\%57.

Pandya et al. introduced the concept of providing patient specific risk estimates in the first trimester based on maternal age and the NT measurement58. By multiplying the maternal age related risk with the LR given by the NT measurement a post test risk specific to the pregnant woman could be calculated. In 1998 Snijders et al. published a large multicenter study coordinated by the Fetal Medicine Foundation in London based on 96,000 pregnancies59. The individual patient specific risks were calculated based on maternal age, gestational age and fetal NT thickness. Using
a risk cut off of 1:300 the screening strategy was found to have a detection rate of 77% for a false positive rate of 5%. Figure 7 shows the frequency distributions according to NT deviation in the study to visualise the NT screening potential.

Figure 7: Frequency distributions for NT measurement expressed as deviation from the normal median for CRL in chromosomally normal fetuses (black bars) and trisomy 21 fetuses (light blue bars) (permission from FMF, based on data reported by Snijders et al. 1998)

The high performance was confirmed among others in a study from Denmark. Woejdemann et al. performed a large population based screening study (Copenhagen first trimester study), including 8,995 fetuses with an NT measurement and when using a 1:250 cut off they found a detection rate of 75% for a false positive rate of 1.8%60.

While gaining increased experience with the first trimester NT measurement in larger datasets, it was found that NT increases with gestational age (as shown in figure 8). Instead of using a fixed cut off at 2.5 mm or 3 mm to define a high risk group it was found that using an NT measurement which was corrected for gestational age (according to measurement of the crown rump length (CRL)) made the performance of the NT better as a marker for chromosomal abnormalities61

Figure 8: Distribution of NT measurements according to CRL. The green line represents the 50 percentile and the red lines the 5th and 95th percentile (permission from Astraia software gmbh)
Different ways of expressing the NT measurement independently of the gestational age and subsequently use the corrected measurement to provide the LR have been suggested. Sahota et al. compared the delta-NT-approach, the multiples-of-the-median-(MoM) approach and the mixture-model-approach and found that none of the suggested methods outperformed the others. The currently used concept in the FMF software programmes is the mixture model described by Wright et al. based on two NT distributions; a CRL dependent and a non- CRL dependent. The 99th percentile for NT is for all gestational ages 3.5mm.

Biochemical markers
During pregnancy the placenta synthesizes a wide range of proteins and peptides which are secreted into the maternal serum. In cases where there is a difference in the mean concentration of these placenta products in maternal blood in euploid fetuses and fetuses with chromosomal abnormalities, they can potentially be used as screening variables/biochemical markers for fetal aneuploidy using the concept of Gaussian distributions described in the previous section.

Pregnancy associated plasma protein-A (PAPP-A) is a glycoprotein mainly synthesized in the syncytiotrophoblast cells. PAPP-A is a metalloproteinase which specifically cleaves insulin-like-growth-factor-binding-protein-4 (IGFBP-4). By cleaving the IGFBP-4 which inhibits the insulin-like-growth-factors (IGFs) high levels of PAPP-A are associated with higher levels of IGFs, which play a role in fetal growth. PAPP-A can be detected in maternal serum soon after egg implantation and its concentration increases throughout pregnancy with a doubling time of 3-4 days within the first trimester.

Free β-human Chorionic Gonadotrophin (free β-hCG) is a subunit of human Chorionic Gonadotrophin (hCG), a glycoprotein like PAPP-A produced by the syncytiotrophoblast. Free β-hCG as hCG is present in the maternal circulation immediately after implantation and its concentration rises exponentially doubling every 48 hours until week 10 of pregnancy. hCG is essential for the maintenance of the placentation throughout pregnancy and is important for the angiogenesis in the placental spiral arteries in the first trimester. Because the levels of PAPP-A and free β-hCG change rapidly during the first trimester of pregnancy, the interpretation of a given concentration is highly dependent on the gestational age at blood sampling. This gestational age dependency can be removed by expressing the observed concentration for each marker as a ratio of the median value observed in a normal pregnancy at the
same gestational age. The new unit is called a *multiple of the median (MoM)* \(^{27,31}\). The distribution of the MoM values for the biochemical markers in normal and trisomy 21 pregnancies usually follows a Gaussian distribution when the MoMs are log transformed, which is convenient when calculating patient specific risks based on LR for a screening test as described previously \(^{71}\). In addition to gestational age a number of other maternal or pregnancy associated factors can affect the serum concentration of the markers (listed in table 2). When using PAPP-A and free β-hCG in prenatal screening programmes these factors also need to be taken into account in order to provide accurate individualised risk assessments \(^{72}\).

<table>
<thead>
<tr>
<th>Maternal weight(^{73,74})</th>
<th>PAPP-A</th>
<th>free β-hCG</th>
</tr>
</thead>
<tbody>
<tr>
<td>- low maternal weight vs. all</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>- high maternal weight vs. all</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>Multiple pregnancy(^{75,76})</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Smoking(^{77,78})</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>Ethnicity(^{79})</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>- Afro-caribbeans and Asians vs Caucasians</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>IVF/ICSI(^{80})</td>
<td>↓</td>
<td>→</td>
</tr>
<tr>
<td>multiparous vs nulliparous(^{72})</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>IDDM(^{81})</td>
<td>↓</td>
<td>→</td>
</tr>
<tr>
<td>Female fetal sex(^{82})</td>
<td>↑</td>
<td>↑</td>
</tr>
</tbody>
</table>

Table 2: Maternal and pregnancy characteristics affecting biochemical markers

In a normal pregnancy the median PAPP-A and median free β-hCG MoM value is per definition 1.0. In pregnancies affected by trisomy 21 the concentration of PAPP-A tends to be lower and free β-hCG to be higher, with values typically around 0.5 MoM for PAPP-A and 2.0 MoM for free β-hCG\(^{83-86}\). The MoM values in trisomy 21 pregnancies are not stable across gestation\(^{87}\). PAPP-A MoM values in trisomy 21 pregnancies are lower early in the first trimester and thus PAPP-A discriminates better as a marker for trisomy 21, if the maternal blood sample is collected in gestational week 8 compared to week 12\(^{85}\). The opposite is found for free β-hCG, which is a better marker at later gestational ages, as MoM values in affected pregnancies are higher later in the first trimester (Figure 9).
Using either PAPP-A or free free β-hCG as a single marker for trisomy 21 in the first trimester in combination with maternal age, PAPP-A has been estimated to have a detection rate of 48-52% for a fixed false positive rate of 5%, while the detection rate for free β-hCG is 42-46%. In combination the detection rate increases to 67%. The performance of the combination of maternal age and the two first trimester biochemical markers has also been confirmed in the Danish first trimester study, where a detection rate of 73% for a false positive rate of 8.8% was reported.

As described the maternal serum markers are highly dependent on gestational age. Traditionally dating of the pregnancy has been performed using information on the last menstrual period (LMP). Dating by ultrasound is a more reliable method, preferably performed in the first trimester of the pregnancy by measurement of CRL and it has been found that performance of the screening test for trisomy 21 can be improved by correct dating.

Combined first trimester screening performance

Association studies and screening studies

The combination of NT and either of the two biochemical markers PAPP-A and free β-hCG all measured in the first trimester of pregnancy was described by Brizot et al. in 1994 and 1995 respectively. Spencer and Nicolaides estimated that the detection rate using the combination of
NT, PAPP-A and free β-hCG would be 90% for a 5 % false positive rate88. Several other authors have retrospectively estimated a high performance of the combined screening95-97 and in the beginning of 2000 prospective first trimester screening studies in specialised centres reported detection rates around 90% for a false positive rate of 5 %57. In 2005 Nicolaides and co-workers reported the largest prospective screening study performed in seven specialised medical centres on 75,821 pregnant women98. They found as expected a detection rate of >90% for a false positive rate of 5.2%. There is thus extensive evidence for the first trimester combined screening strategy to be a reliable screening test for trisomy 21.

Risk algorithms

The complexity of the calculations needed to provide patient specific risk when performing first trimester combined risk assessment has increased steadily during the last decade. Consequently statistical software programmes are required to assist sonographers, biochemists and doctors in calculating risks. Most of the programmes have been developed with support from the Fetal Medicine Foundation (FMF) in London (www.fetalmedicine.com) and the risk algorithms have been developed based on datasets from studies performed primarily in the UK by prof. Nicolaides and his group. They have established a very large database with pregnancy and scanning information on more than 100,000 women, including a large number of cases with chromosomal abnormalities which is essential for development and optimisation of risk algorithms. A recent remarkable outcome of this database has been the development of a mixture model for NT distributions, which quantify the deviation of the measured NT from the expected using two distributions, one which is dependent on CRL and one, that is not63. For the biochemistry markers Kagan et al. have recently suggested a multiple regression model to estimate the likelihood ratios for the biochemical markers taking into account the characteristics that influence the measured concentrations of PAPP-A and free β-hCG as described in table 272. In addition a recent paper including Danish data has provided improvement of the algorithm in cases where the biochemical markers are measured early in the first trimester87. Validation of the proposed algorithms in independent datasets is an essential task. Kagan et al. reported in 2009 a prospective validation study of the mixture model algorithm for NT measurement and the multiple regression model for biochemistry and thus confirmed the expected performance of the first trimester combined screening using the algorithms suggested by FMF99.
Population based studies

The majority of data on which the clinical evidence of the screening performance and the algorithms are based, has been collected in highly specialised departments often as part of interventional studies, often in high risk populations. The reason for this is probably that it is not possible to report reliable results from a routine screening set up unless follow-up on pregnancy outcome is done consistently and regularly, as this information is essential when determining detections rates. Follow-up is often time consuming and in many centres impossible, when screening is done in one centre and the delivery in another centre. For that reason there are still only few reports providing evidence on screening performance in routine practice with almost the same screening performance as reported from specialised centres and studies\(^{100-104}\).

Due to the new national guideline on prenatal screening issued in 2004 Denmark was one of the first countries in the world to routinely offer the first trimester combined screening test to all pregnant women. Our registers in Denmark make national follow-up possible. A national cohort study of the screening performance for the first trimester combined screening programme in Denmark following the new guideline is part of this thesis.

Timing of screening

The best gestational age to perform the first trimester combined screening test has gradually been defined through the development phase over the past 20 years. The optimal gestational age for measurement of the NT is defined by the FMF to be at the time when the fetus has a CRL measurement of 45-84 mm\(^{105}\), which corresponds to a gestational age of 11+2-14+0 weeks\(^{106}\). The reason for selecting 11 weeks as the lower limit for measurement of the NT is that many major fetal malformations such as anencephaly and omphalocele can only be diagnosed after 11 weeks\(^{107;108}\). In addition screening necessitates the availability of a diagnostic test. A CVS can safely be performed from week 11. The upper limit of 14 weeks is mainly chosen to provide women with affected fetuses the option of an early and safer termination\(^{105}\). Other factors determining the best time for performing the nuchal scan is the fact, that NT is a better marker in the first trimester as the incidence of increased NT thickness in chromosomally abnormal fetuses is lower in the second trimester\(^{36;38}\), and the finding that the success rate for performing the NT measurement is best in week 10-13\(^{109;110}\).

The **OSCAR** (One Stop Clinic for Assessment of Risk) model, where counselling, NT measurement, blood sampling and risk assessment are provided in one visit around week 12-13 was logistically seen as an advantage when introduced\(^{111}\). It was made possible by the development of new
immune assay techniques, which could provide measurement of PAPP-A and free β-hCG within 30 minutes. Recently reports have consistently described improved screening performance for trisomy 21 by measuring the biochemical markers around gestational week 972,87,112,113. In most centres in Denmark biochemical testing and ultrasound scan are carried out at two separate visits, aiming at collecting a blood sample early around week 9-10 and performing the scan around week 12. Theoretically the most optimal timing of the biochemical testing would be to measure PAPP-A early, in gestational week 9 and free β- hCG later, in week 12 due to the above mentioned change in MoM values for trisomy 21 pregnancies dependent on gestational age87. Up to now only one paper has investigated how repeated measurement within the first trimester can affect screening performance, examining 261 pairs of samples114. A larger prospective evaluation of repeated sampling and its impact on screening performance is presented as paper 3 in this thesis.

Alternative screening models
Modifications of the first trimester combined screening have been proposed. In 1999 Wald et al. introduced the concept of \textit{integrated testing}, measuring PAPP-A and NT in the first trimester and hCG, AFP, unconjugated estradiol and inhibin A in the second trimester115. The result of the first trimester test is not revealed to the pregnant women until the overall test result is ready in the second trimester (week 16-18). They reported a detection rate of 94% for a false positive rate of 5%, which has been confirmed in two large prospective studies116,117. This approach has been questioned and has not gained general acceptance as it implies logistic challenges, ethical questions about withholding information and a late termination of pregnancy in affected cases118.

Another alternative to first trimester combined screening is \textit{contingent testing}. The principle in contingent screening in general is to divide the screened population into 3 risk groups based on a first stage screening test; a high risk group, which immediately would be offered a diagnostic test, a low risk group which would be given the low risk result and no further testing and an intermediate group, which would be offered a second stage screening test with a re-evaluation of the risk. A number of different contingent screening protocols have been suggested and evaluated in terms of cost/effectiveness119-127. Contingent screening within the first trimester is probably the most acceptable approach and was first proposed by Christiansen et al. and Cuckle using either serum biochemistry or NT measurement as the first stage screening test followed by the opposite test in an intermediate risk group120,121. Recently Kagan et al. evaluated these two contingent protocols122.
They report a slightly better performance when using NT measurement as the first stage screening test followed by biochemical testing of only 20% of the population which has an intermediate risk compared to using biochemistry as the first stage screening test. The reported detection rate (90%) and false positive rate (3%) are similar to achievable rates when performing serum biochemistry and NT measurement in all pregnancies. Further improvement of screening performance may be achieved using contingent protocols where first stage consists of a combined first trimester screening test and the second stage is a measurement of additional first trimester ultrasound markers in the intermediate risk group122;128;129. This approach is discussed in the fourth paper of this thesis and also in the background section on “new ultrasound markers”.

Screening in twins

First trimester screening for chromosomal abnormalities in twins can be performed by using the NT measurement and the maternal age130;131. In dichorionic twins the risk for each fetus is calculated based on the individual NT measurement. The NT thickness is found to be correlated in dichorionic pregnancies which should be taken into account in the risk calculation algorithms132-134. In monochorionic pregnancies which per definition are monozygotic the average of the two NT measurements is used in the risk calculation135. The serum markers PAPP-A and free β-hCG can be added to improve screening performance but it is essential to adjust for chorionicity and gestational age at sampling75. In dichorionic pregnancies the levels of the markers are about twice as high as in singleton pregnancies, while in monochorionic pregnancies the levels are lower than for dichorionic twins76;135. The largest twin study performed reports screening performance in dichorionic twins using maternal age, NT measurement and biochemistry to be close to the standard for screening in singleton pregnancies75.

Screening for other trisomies

As described in the previous section the majority of the first reports which described the association between NT and chromosomal abnormalities were not restricted to trisomy 21 but included all chromosomal abnormalities57. As most chromosomal abnormalities are highly associated with high mortality and morbidity they all seem relevant to screen for. When screening moved towards combined first trimester screening introducing the need for complex risk algorithms it became clear, that there was a need for separating the risk algorithms.
Trisomy 18 and trisomy 13 follow trisomy 21 as the most common trisomies. The relative prevalence of trisomy 18 and trisomy 13 to trisomy 21 is 1:3 and 1:7 respectively. Trisomy 18 and trisomy 13 are both associated with increased maternal age and increased NT thickness, but there are major differences in the levels of the biochemical markers depending on fetal karyotype. In trisomy 13 and trisomy 18 pregnancies both PAPP-A and free ß- hCG are lower than in unaffected pregnancies. In addition trisomy 13 is associated with fetal tachycardia. Use of the trisomy 21 algorithm will identify around 75% of trisomy 18 and trisomy 13 fetuses. In 2002 Spencer et al. suggested an algorithm for trisomy 13 and trisomy 18 and specific algorithms for each trisomy are now available. Kagan et al. found that the combination of all three algorithms can detect 95% of trisomy 18 and trisomy 13 fetuses for only a small increase in false positive rate (0.1%) added on the false positive rate given by the trisomy 21 algorithm.

Previously the detection of trisomy 13 and 18 was based on detection of anomalies in the second trimester with relatively high detection rates, as a high proportion of these trisomic fetuses have major defects like holoprosencephaly and exomphalos. As the fetal loss rate during pregnancy is high in fetuses with trisomy 18 and trisomy 13, it has been argued that first trimester screening is unnecessary, as the majority of trisomy 18 and trisomy 13 fetuses will either die in utero or be detected by an anomaly scan in the second trimester. The advantage of an early first trimester detection with a possibly safer pregnancy termination seems however to overrule the small increase in number of invasive tests that will have to be performed when screening for trisomy 18 and 13 in the first trimester. The second paper in this thesis evaluates how the change in national screening strategy has affected detection of trisomy 18 and trisomy 13 in Denmark.

Quality control
Screening for trisomy 21 using measurement of the fetal NT and measurement of biochemical markers relies on effective and continuous quality surveillance. A large variation or a consistent bias in the measurement of NT and biochemical markers will lead to significant underperformance of the tests. Most biochemical laboratories adhere strictly to internal and external quality control programmes. In Denmark the laboratories are all certified by EN15189 and use the UKNEQAS programme for external quality control (www.UKNEQAS.org.uk). Still it is essential to regularly monitor shifts in MoM values. The FMF software systems provide audit functions also for the biochemical markers. It is also now possible for the laboratories to use own medians when
calculating biochemical MoMs for the risk assessments, as also suggested by Sorensen et al. 2010. Several authors have documented a positive effect on performance when there is intensive focus on training, measurement of quality and follow-up on NT measurement. The inter- and intra-observer variation for NT measurements has been reported to be low, but dependent on experience of the examiner. It has been estimated that approximately 80-100 supervised scans are needed to achieve a satisfactory repeatability. Recently a new way to minimise operator bias has been reported, where measurement of the NT is performed using a semi-automated system. Especially non-expert examiners may benefit from using semi-automated NT measurements.

The Fetal Medicine Foundation in London (www.fetalmedicine.com) has been a tremendous resource in organising and centralising training and certification within screening for chromosomal abnormalities. All sonographers performing NT measurements can obtain a certificate of competence by completing an internet based course and submit a logbook of three NT images. In addition it is required to pass a yearly audit consisting of assessment of another three images and an NT distribution curve. The FMF supported software programmes facilitate internal quality assurance on NT distributions. In Denmark it has been decided to fully use the FMF certification and audit system and all sonographers performing first trimester NT measurements are FMF certified.

New biochemical markers
Investigators have tried for many years to supply the market with additional first trimester biochemical markers for trisomy 21. In a recent meta-analysis Spencer et al. have listed some of the maternal serum biochemical markers and their respective MoM medians in trisomy 21 pregnancies (table 3). By far the best markers are still the free β-hCG and PAPP-A. A new candidate first described in 2003 by Laigaard et al. is ADAM12. ADAM 12 (A disintegrin and metalloprotease) was initially found to be an extraordinarily good marker in the first trimester. Unfortunately, when changing to the second generation laboratory assay, robustness was increased on the expense of considerable loss of discriminatory power. Even though it seems, that some of the biochemical makers might have potential, they are often correlated, and therefore the advantage of adding them to the screening test becomes of limited value. This conventional way of thinking when choosing markers has though been challenged by Wright and Bradbury. They
suggest using repeat measurement of highly correlated markers as an alternative approach for improvement in screening by looking at bivariate distributions of the markers. In addition the future may also bring more studies which examine extremely narrow windows for measurement of the markers within the first trimester as some serum markers’ discriminatory power change rapidly with gestational age.

<table>
<thead>
<tr>
<th></th>
<th>median MoM</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAPP-A</td>
<td>0.45</td>
<td>777</td>
</tr>
<tr>
<td>free β- hCG</td>
<td>1.98</td>
<td>846</td>
</tr>
<tr>
<td>Inhibin A</td>
<td>1.59</td>
<td>112</td>
</tr>
<tr>
<td>Total hCG</td>
<td>1.33</td>
<td>625</td>
</tr>
<tr>
<td>AFP</td>
<td>0.80</td>
<td>611</td>
</tr>
<tr>
<td>SP1</td>
<td>0.86</td>
<td>246</td>
</tr>
</tbody>
</table>

Table 3: Meta-analysis of published maternal serum markers in cases with trisomy 21 (n) in the first trimester modified after Spencer 2007

New ultrasound markers
In addition to NT, a number of other ultrasound markers have been described in relation to trisomy 21. The development and later the standardisation of the use of the markers have been mainly driven by the Fetal Medicine Foundation. Protocols on how to use the markers and certification processes have been developed and published.

The dysmorphic features observed in persons with trisomy 21 has lead to further examination of landmarks in the fetal profile as possible ultrasound markers. The fetal nasal bone can be visualised on a mid sagittal view of the fetal profile as seen in figure 10. Several studies have demonstrated a high association between absent nasal bone in the first trimester and trisomy 21 and other chromosomal abnormalities. Unlike in the second trimester of pregnancy measurement of the length does not seem to add to screening performance of this marker. Absence of the nasal bone in the first trimester is found in approx. 60% of fetuses with trisomy 21 and <3% in euploid fetuses (table 4). The prevalence is dependent on gestational age, ethnicity and NT thickness, but independent of the biochemical markers in the first trimester. Adjustment of likelihood ratios is done accordingly using risk algorithms, and performance of first trimester combined screening including the nasal bone is reported to be increased.
Another facial marker is the *facial angle*. The image requirement is the same as for the nasal bone, but here even small deviations from the midline may change measurement considerably, and thus 3D ultrasound may aid in performing this evaluation180. Increased angle above the 95th percentile is seen more often in fetuses with trisomy 21, and thus accordingly screening performance may be improved by adding this marker into the risk calculation (table 4).

![Image of facial angle and nasal bone](image)

Figure 10: Mid sagittal profile image of a fetus showing the measurement of the facial angle (78.86°, which is normal) and the nasal bone (present).

During the last 5-10 years first trimester assessment of the fetal heart has moved from highly specialised centres to become a possible integrated part of first trimester screening for chromosomal abnormalities as well as screening for cardiac defects181. The ductus venosus is a small vessel which in the fetal circulation shunts oxygenated blood from the umbilical vein towards the heart182. The *flow in the ductus venosus* can be visualised using pulsed Doppler. The normal flow demonstrates forward flow through the cardiac cycle with changes corresponding to various phases of the cycle. Flow during atrial contraction (a-wave) appears to be sensitive to changes in fetal cardiovascular status172. The a-wave is normally positive or absent (figure 11), whereas abnormal flow is defined by the FMF as a negative a-wave (reversed flow). As seen in table 4 an abnormal a-wave is more often found in fetuses with trisomy 21 than in euploid fetuses. The reason for this association is not fully understood, however it has been suggested that connective tissue changes in fetuses with trisomy 21 may cause increased stiffness of the myocardial walls leading to an increased right ventricular filling pressure and reversal of the flow through the ductus venosus172. The same etiology may be underlying another cardiac marker, tricuspid regurgitation/abnormal flow across the tricuspid valves172. The described changes in the
connective tissue may result in a relative dilatation of the right ventricle and the right valve annulus172. Abnormal tricuspid flow as seen on figure 12 is a more prevalent finding in fetuses with trisomy 21 and thus another possible new ultrasound marker (table 4). Recently Bilardo et al. and Zvanca et al. have both described the finding that \textit{increased flow in the fetal hepatic artery} measured by ultrasound pulsed Doppler is associated with trisomy 21183,184.

![Figure 11 shows a normal flow pattern in the ductus venosus with a positive A-wave](image1)

![Figure 12 shows abnormal tricuspid flow, with tricuspid regurgitation in the systole of more than 60cm/sec.](image2)

<table>
<thead>
<tr>
<th>Ultrasound markers</th>
<th>Prevalence</th>
<th>Screening performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absent nasal bone179</td>
<td>2.6%</td>
<td>59.8%</td>
</tr>
<tr>
<td>Increased facial angle > 95 percentile185</td>
<td>5.0%</td>
<td>45.0%</td>
</tr>
<tr>
<td>Abnormal ductus venous flow129</td>
<td>3.2%</td>
<td>66.4%</td>
</tr>
<tr>
<td>Tricuspid regurgitation128</td>
<td>0.9%</td>
<td>55.7%</td>
</tr>
</tbody>
</table>

Table 4: Prevalence of the new ultrasound markers and screening performance in combination with NT, PAPP-A and free β-hCG according to FMF studies. (DR=detection rate, FPR=false positive rate)
All the new ultrasound markers should only be used in addition to assessment of the NT, as NT remains the most robust first trimester marker of trisomy 21186. As the new ultrasound markers, though in different degree, are dependent on factors like gestational age, smoking, ethnicity and NT thickness it is important to use available risk algorithms provided in the FMF software programmes to get the most accurate individual risk assessment with inclusion of the markers172. The risk algorithms are primarily based on large data sets provided in studies supported by FMF. Thus independent validation of the algorithms still seems to be required.

It has been suggested to use the additional ultrasound markers in \textit{contingent screening protocols within the first trimester} and thus reserve the assessments to only a minor proportion of the pregnant women98. A first trimester combined screening test divides the pregnant women into 3 categories, high (risk >1:50), intermediate (risk 1:51-1:1000) or low risk (risk < 1:1000). Only women in the intermediate risk group (12% of the population) are offered additional assessment by adding the new ultrasound markers. Thus the required training of sonographers and extra scanning time is kept at a minimum128;129;177. The corresponding performance has been found to be as effective as if the ultrasound markers were assessed in all first trimester examinations128;129. In the last paper in this thesis we investigated the impact on screening performance for trisomy 21 by including the assessment of the ductus venosus flow and tricuspid flow in a two stage screening strategy.

\textbf{Other advantages of first trimester screening}

While screening for chromosomal abnormalities was the initial reason for performing a first trimester ultrasound and biochemical examination of the fetus, it has now been suggested that the first trimester screening test is the most important examination of the fetus during pregnancy in general. In a recent review by Nicolaides the concept of bringing the first trimester examination in focus has been presented by the term “turning the pyramid of prenatal care”187.

The list of advantages which can be attributed to first trimester screening has been growing during the last 20 years. Initially one of the clear benefits of performing an ultrasound scan during the first trimester of pregnancy was early detection of pregnancy failure188. In addition performing a nuchal translucency measurement requires measurement of the CRL as accurate dating of the pregnancy is essential for the screening test. Dating of the pregnancy by ultrasound in the first trimester using CRL is superior to dating by LMP and thus an advantage for women and obstetricians, as correct dating reduces the number of post-term pregnancies and number of inappropriate inductions189.
Up to recently unsuspected birth of multiples occurred regularly even in developed countries. Screening by ultrasound for anomalies in the second trimester has probably reduced the number, but still determination of chorionicity has to be performed before 15 weeks of gestation\(^\text{190;191}\). Chorionicity is an important predictor for outcome in twins\(^\text{192-194}\), and a first trimester scan allows for optimized pregnancy care according to chorionicity\(^\text{195}\). A number of publications have also addressed the possibilities of predicting twin-twin-transfusion-syndrome in the first trimester by assessing the NT thickness and possible CRL discordance in monochorionic twins\(^\text{196-198}\). Thus a first trimester scan is essential in twin pregnancies.

As mentioned briefly in the section on NT, increased NT thickness is related to a wide range of fetal abnormalities and syndromes. NT measurement can be viewed as a screening test for other fetal complications and it is relevant to follow-up on these pregnancies and offer additional ultrasound examinations later in the pregnancy\(^\text{46}\). The specific association between increased NT thickness in the first trimester in fetuses with a normal karyotype and cardiac defects was first described by Hyett et al. in 1996\(^\text{41}\). The risk of a cardiac defect increases with increased NT measurement. The prevalence of cardiac defects is 6 times higher in fetuses with a NT ≥99th percentile than in an unselected population\(^\text{199}\). A meta-analysis reported a detection rate of 31% for a false positive rate of 1.3% for major cardiac defects using NT > 99 percentile as the cut off\(^\text{200}\). Other first trimester ultrasound markers such as abnormal ductus venosus flow or abnormal tricuspid flow are also associated with cardiac defects, and additional ultrasound examinations seem appropriate to offer, if one of these markers is present at the routine first trimester assessment\(^\text{172;201}\).

The ultrasound equipment has undergone tremendous improvement during the last 20 years and an increasing number of fetal anomalies have become directly detectable when performing a first trimester ultrasound scan. A basic first trimester scan can identify all cases of body stalk anomaly, alobar holoprosencephaly, exomphalos, gastrochisis and megacystis according to Syngelaki et al.\(^\text{202}\). It is considered a major advantage for the parents to opt for an early and safer termination of the pregnancy in cases where an anomaly, which is lethal or associated with severe handicap, is diagnosed already in the first trimester of the pregnancy.

The latest bullets added to the “advantage list of the first trimester scan” are the pregnancy complications e.g. preeclampsia\(^\text{203}\), preterm delivery\(^\text{204}\) and intrauterine growth restriction\(^\text{205}\) for which it is possible to screen in the first trimester of pregnancy. It is highly relevant to identify high risk pregnancies as early as possible in order to plan intensified follow-up and consider intervention\(^\text{187}\). Screening can be done by having access to maternal history and characteristics,
maternal blood pressure, a first trimester ultrasound assessment including assessment of the placental function and cervical length and the biochemical markers PAPP-A and free β-hCG. Risk is calculated using Bayes theorem and the likelihood principles for screening as outlined previously\(^1\). Thus the concept used in screening for chromosomal abnormalities has formed the basis for possible major improvements in obstetric care in the future.

Ethical aspects, women’s attitude and choice

Ethical considerations and dilemmas are closely related to prenatal screening and diagnosis. As described previously the Danish National Board of Health introduced in 2004 a national consensus on offering first trimester screening for trisomy 21 to all pregnant women in Denmark as one of the first countries in the world. Although the Danish Council of Ethics did question whether the new guideline was ethically acceptable, it was accepted by politicians\(^2\). In the health care system in general there has during the last 10-20 years been increased focus on information, respect for autonomy and personal integrity. Having access to a first trimester screening service which is based on informed consent enhances the autonomy of pregnant women and is considered ethically obligatory according to Chasen et al., Chevenak et al. and Nicolaides et al.\(^1\);\(^2\);\(^3\). During the last 5 years many European countries have started to offer first trimester screening to all pregnant women preceded by information\(^2\). Some countries still do not have political support to change the prenatal service. In Norway the government does not allow doctors to perform any prenatal screening test for chromosomal abnormalities, unless there is a special indication like age above a certain cut off\(^4\). Thus women living a little more than 100 km north of Denmark do not have the right to choose a prenatal screening test for trisomy 21. The women’s attitude towards being given the offer of first trimester screening has been studied by Müller et al. In the Netherlands the majority of the participating women had a positive attitude towards screening and preferred to have the offer\(^5\).

Spencer and Aitken and de Graff et al. have studied, what kind of screening programme women prefer if given a choice. They both report that the majority prefer first trimester screening compared to second trimester and integrated testing\(^6\);\(^7\). Women who are offered a first trimester screening test (both acceptors and decliners) are less anxious during pregnancy and after delivery compared with those who are not offered screening according to Müller et al.\(^8\). Around 90% of the Danish pregnant women choose to have a first trimester screening test for trisomy 21\(^2\). It was
emphasised in the Danish guideline from 2004 that women should be given thorough and neutral information about prenatal screening as a basis for decision making1. This *informed choice* paradigm is an essential part of the prenatal screening concept. Different definitions of informed choice or informed decision-making exist. They all include at least the following two dimensions: first, the decision should be based on relevant information, and second, it should be consistent with the decision maker’s values214,215. The first dimension has been studied by Dahl et al., who performed a large Danish population based survey on how well informed the pregnant women were in relation to prenatal screening and diagnostic tests after having made an informed choice about participation or not in the screening programme216. They found that women were well informed about the test concept and the main condition screened for. The pregnant women were found to be less knowledgeable about test accuracy and the potential risk of adverse findings other than trisomy 21. The same group also investigated how level of knowledge was related to level of decisional conflicts and levels of wellbeing217. They found that higher knowledge was associated with less decisional conflict when deciding whether to participate in the first trimester screening programme. In addition high levels of knowledge were associated with increased level of wellbeing. The same conclusions have been reported by other authors215,218. Van den berg et al. found in a Dutch study where they examined both dimensions of the informed choice that 68% of the participating women made an informed choice based on both sufficient knowledge and on consistency with the decision maker’s values215.

Individual decision making in prenatal screening is reported to be influenced by social, psychological, cultural, religious and ethical beliefs219. Thus it can be a major challenge to provide counseling in prenatal screening. It is essential that health care professionals are aware of their responsibility of giving neutral and thorough information to the pregnant women. Focus has to be kept on offering and not suggesting. Optimally, the health care professional should be using a non-directive counseling philosophy where the client’s values are discussed and the counselors views are deliberately excluded220. In the Danish Guideline the importance of presenting all treatment possibilities and achievable help provided by the society is emphasized. Counseling by non health care professionals is also possible and information about this should always be given to the couple1. In addition it seems essential that the society can offer high standard care during pregnancy and after delivery also to infants with chromosomal abnormalities and to their families.
Epidemiological research in Fetal Medicine

In Denmark we have unique opportunities for performing quality research in Fetal Medicine. As described we have national consensus regarding prenatal screening offers, thus there is a basis for national population based studies. In addition everyone in Denmark is given a unique personal identification number at birth, which is used in all contacts with the social system and hospital system. We use this in our hospital records and registers and it enables us to link information between registers. When the new national guideline was introduced in 2004 all departments in Denmark agreed to use the same software system for risk calculation and storage of ultrasound data; Astraia (Astraia software gmbh, Germany, www.astraia.com). The system is one of the software solutions supported by FMF. Relevant pregnancy and screening data are entered by sonographers or doctors locally. The system provides an audit module for first trimester screening data (NT measurements and maternal biochemistry) and in addition access by a query function to all entered data.

One of the essential parameters when assessing screening performance is detection rate. Complete follow up regarding fetal karyotype is required to calculate a valid detection rate. In Denmark all Departments of Clinical Genetics forward results on all karyotype analyses to the Danish Central Cytogenetic Register which provides central access to chromosomal follow-up.

In Denmark we have established a Danish Fetal Medicine Database. The database is based on data from all 15 local Astraia servers in Denmark and contains data back from 2008. Data entered as part of the routine screening practice when performing nuchal translucency scans and anomaly scans are sent daily to a common server. Before the national database was started all departments in Denmark agreed to use the same standard curves for biometries in the first and second trimester. It was also decided to use CRL measurement in the first trimester to estimate date of delivery. A 1:300 risk is used as a cut off point for referral to invasive diagnostic testing. In addition a set of mandatory data for each scan type was defined. Outcome data of the pregnancy is collected from the Danish Central Cytogenetic Register (prenatal and postnatal chromosome analyses), the National Patient Register (spontaneous and induced abortions) and from the National Birth Register, from where information about pregnancy, delivery and the newborn is received. All this information is linked in the Danish Fetal Medicine Database using the unique personal identification number. For each pregnancy, scanning information on one or more fetuses is linked to a karyotype result if performed during or just after the pregnancy, and in addition either
information on loss of pregnancy or delivery is available for every pregnancy (figure 13). Data from the national database can be used for local and national quality assessments as well as for research projects.

![Diagram](image.png)

Figure 13: Data sources in the Danish Fetal Medicine Database
Own studies

Paper 1

Impact of a new national screening policy for Down’s syndrome in Denmark: population based cohort study.

Aim

Our aim was to evaluate the impact of a new national first trimester screening strategy introduced in Denmark in 2004 on the number of Down’s syndrome births and the rate of chorionic villus samples and amniocenteses. In addition we wanted to determine detection and false positive rates in the screened population in 2005 and 2006.

Methods

It was a population based cohort study. Pre- and postnatally detected cases of Down’s syndrome and the number of invasive diagnostic procedures were retrieved from the Danish Central Cytogenetic Register for the period 2000 to 2007. Data was collected from all 19 departments of obstetrics and gynaecology in Denmark performing the first trimester risk assessment. Information on number of women screened in 2005 and 2006, screen positive rate and screening information on postnatally diagnosed infants with Down’s syndrome were retrieved.

Results

First trimester combined risk assessment was introduced successively. In January 2005 nine out of 15 counties (60%) offered the assessment and by June 2006 the offer covered the entire country.

The number of newborns with Down’s syndrome was reduced from 55-65 per year in 2000-2004 to 31 and 32 in 2005 and 2006 respectively.

The total number of prenatal diagnostic procedures (chorionic villus samples or amniocenteses) decreased from 7,524 in 2000 to 3,510 in 2006. The proportion of chorionic villus samples increased from 44% to 66% during the same period.

Approximately 65,000 women were pregnant in Denmark in each of the years 2005 and 2006. In 2005 40,815 women (approx. 63%) had a first trimester risk assessment performed, while this number rose to 54,830 (approx. 84%) in 2006. In 2005 a total of 1,706 women (4.2%) had a risk > 1:300 (screen positive rate) while this number was 1,899 women in 2006 (3.5%).

In the population screened in 2005 the detection rate of Down’s syndrome was 86% [95% CI 79-92%] as 104 were screened true positive out of 121, who carried a Down’s syndrome fetus. In 2006 the detection rate was 93% [95% CI 87-97%] as only 7 women received a false negative screening result.
Discussion

To the best of our knowledge this is the first report describing the impact of a nationwide offer of a first trimester combined risk assessment for Down’s syndrome. Even before the policy was fully implemented, a dramatic effect could be seen, as the number of children born with Down’s syndrome decreased by approximately 50%, and the number of prenatally detected cases increased by around 30%. We also found, that the number of prenatal diagnostic tests (chorionic villus samples and amniocenteses) performed yearly decreased by more than 50% from 2000 to 2006.

We found detection rates for Down’s syndrome of 86% and 93% respectively in the screened populations in 2005 and 2006 for false positive rates of 3.9% and 3.3%. This is in accordance with the screening performance expected by the National Board of Health when it was decided to implement this new screening strategy. This performance may be considered very high, especially since the screening programme in 2005 and 2006 in many centres implied a completely new screening method. Furthermore we report the result of routine clinical practice, where not all risk assessments are based on the optimal parameters (combination of maternal age, nuchal translucency scan and biochemical test) as some are given only on maternal age and nuchal translucency or biochemistry. Other authors have also reported screening results achieved in routine clinical practice in up to 13 centres with detection rates between 83% and 93% and false positive rates between 3.9% and 5.9%.

Our data show that it is possible to introduce this screening strategy in as many as 19 different centres and still obtain national detection and false positive rates similar to those from specialized centres. It is well known that the implementation of new screening strategies requires extreme efforts. In Denmark with a public, free-of-charge hospital system, we have succeeded in establishing a strong national fetal medicine organisation. Recruitment and training of sonographers as well as quality control is in accordance with the guidelines from the Fetal Medicine Foundation in London (www.fetalmedicine.com). We have implemented national guidelines on first trimester screening and from 1 January 2007 a common cut-off for referral to invasive diagnostic testing of 1:300 at the time of screening has been implemented. Furthermore the use of the same database software in all departments allows for national data merging. A national quality database has been established, merging data from all fetal medicine units, the Danish National Cytogenetic Register and the National Patient Register. This will allow national follow on up on all screened women and monitoring of national detection rates and false positive rates, as well as invasive testing rates, a quality control which is considered essential following the implementation of a new screening programme.
First-trimester screening for trisomy 21 in Denmark: implications for detection and birth rates of trisomy 18 and trisomy 13

Aim
The aim of this study was to investigate whether the new screening strategy for T21 has changed the gestational age at which trisomy 18 (T18) and trisomy 13 (T13) are diagnosed prenatally, and changed the number of infants born with T18 or T13.

Material and methods
From the Danish Central Cytogenetic Register we collected information on all prenatal and postnatal chromosome analyses for T18 or T13, registered from 1997 to 2007. Information on first-trimester screening results was collected from each department of obstetrics and gynecology performing the nuchal translucency scans. The cut-off used at screening for referral to invasive diagnostic testing for T21 and for T18/T13 was 1 : 300 and 1 : 150, respectively.

Results
In total, there were 435 cases with T18 and 168 cases with T13 between 1997 and 2007 in Denmark. The estimated incidence of T18 and T13 at the time of delivery was calculated as 2.5 and 1.6 per 10,000 deliveries, respectively. The number (proportion) of cases diagnosed before week 18 increased significantly, from 63 (59.4%) in 1997 and 1998 to 90 (80.4%) in 2006 and 2007 (P < 0.001). In addition, the number of T18 and T13 cases diagnosed prenatally after week 22 or postnatally decreased significantly, from 34 (32.1%) in 1997 and 1998 to seven (6.3%) in 2006 and 2007 (P < 0.0001). For women participating in first-trimester risk assessment in 2006 and 2007, the detection rate of T18 and T13 was 78.8% (95% CI, 71.0–86.7%).

Discussion
This report describes how the recently introduced national guideline on first trimester screening for T21 used in routine clinical practice has changed the detection of T18 and T13. We found a significant increase in the number of T18 or T13 fetuses diagnosed before week 18 and a significant decrease in the number of infants born with T18 or T13. Most importantly, the introduction of the new screening strategy has also resulted in a marked decrease in the number of diagnostic invasive tests. From 2000 to 2006 the yearly number of invasive diagnostic procedures in Denmark thus decreased by more than 50%. Several authors have reported performance of the first trimester combined screening for T18 and T13. In 2002 Spencer and Nicolaides derived a combined risk algorithm for T18/T13 with a predicted detection rate of 95% using the risk cut off of 1:150. We found a first trimester detection rate of T18 and T13 of 78.8%
using the same algorithm and cut off. Overall, it seems that detection rates observed in series prospectively collected are not as high as those expected based on modelled data sets. In a large prospectively collected Danish cohort, Kirkegaard et al. reported a 73% detection rate of T18 or T13 (cut off 1:150 for T18/T13, 1:300 for T21).

One could argue that screening for T18 and T13 in the first trimester is not necessary, as the majority of fetuses will either die in utero or be detected if a second trimester scan is performed. Detection rates for T18 and T13 in the second trimester by ultrasound scan have been reported to be 80-86% for T18 and 90-100% for T13. However, no algorithm for the second trimester sonographic screening is available and the screen positive rate is not known. As the overall screen positive rate only increases slightly (0.1%) when including the screening algorithm for T18 and T13 in the first trimester screening programme for T21, it is considered acceptable to include screening for T18 and T13 in the screening programme. Most women prefer screening to be performed early in pregnancy and should the fetus be diagnosed with T18 or T13, the parents can opt for a safer termination of the pregnancy in the first trimester.

The main strength of our study is that we have a large national data set collected in a homogenous low risk population. Local quality assurance of the ultrasound scans are performed via the Fetal Medicine Foundation (www.fetalmedicine.com). The biochemistry departments are accredited by EN15189. Our national cytogenetic register compiles results from all chromosome analyses and is considered to be almost 100% complete. Our prenatal screening information on cases with T18 or T13 in 2006 and 2007 is considered complete, as we were able to find detailed screening information on all cases registered in the Danish Central Cytogenetic Register.

A limitation of our study is that, although the data were registered prospectively, our main objective was to retrospectively look at the gestational age at which T18 and T13 were diagnosed throughout the 11-year period. Therefore, we do not have information on the overall first trimester screen positive rate for T18/T13. We do, however, not expect it to vary from the very low false positive rates (< 0.5%) expected and reported in other study populations.
A prospective study evaluating the performance of first trimester combined screening for trisomy 21 using repeated sampling of the maternal serum markers PAPP-A and free β-hCG

Aim
The aim of this study was to prospectively evaluate the screening performance of first trimester combined screening for trisomy 21 using a double set of the biochemical markers PAPP-A and free β-hCG.

Material and methods
Three Fetal Medicine departments in Denmark participated in the study. Screening for trisomy 21 was set up as a two-step approach with blood sampling performed before the nuchal translucency scan (early sample). A second blood sample was collected at the time of the nuchal translucency scan (late sample). PAPP-A and free β-hCG were measured on both the early and the late samples.

We defined four first trimester screening protocols. All protocols used maternal age, nuchal translucency thickness and biochemical markers in different combinations. Protocol 1 used both PAPP-A and free β-hCG from the late sample, protocol 2 used both PAPP-A and free β-hCG from the early sample, protocol 3 used PAPP-A from the early and free β-hCG from the late sample and protocol 4 used both markers from both samples. Auto and cross correlation between the markers were determined and age standardised detection and false positive rates for the different screening protocols were estimated.

Results
We collected two blood samples in 27 pregnancies affected by trisomy 21 and in 3891 control pregnancies. The early samples were taken between gestational week 8+0 up to week 13+6, and the late samples between week 11+3 up to week 14+6. The median interval between the samples was 17 days (range 1-40 days).

We calculated screening performance according to the four screening protocols for different fixed cut-offs. We found a significantly better (P<0.05) estimated screening performance when using early sampling vs. late sampling (protocol 2 vs. protocol 1). With a risk cut-off of 1 in 100, at the time of the risk assessment, the estimated detection and false positive rates were 91% (95% CI: 81-98%) and 1.6 % (95% CI: 1.3-2.0%) respectively when the blood sample was collected early (protocol 2). Better estimated performance was achieved with the use of the double set of markers (protocol 4); detection rate 93% (95%CI: 85-99%) and false positive rate 1.7% (95% CI 1.4-2.0%), but this was not significantly different from the early sample protocol (protocol 2) (P>0.5).
Discussion
This is the first large prospective study performed to investigate the potential benefits of having access to a double set of maternal serum markers within the first trimester of a pregnancy.
We found that screening performance is improved when risk calculation is based on an early first trimester sample compared to the performance found when the sample is taken at the time of the nuchal translucency scan. This finding was expected due to previously published data on the biochemical markers’ gestational age dependent discriminatory power and in line with two previous studies (Kirkegaard et al. and Borrelle et al.), which evaluated early blood sampling in the first trimester.
One paper has previously investigated if repeat maternal serum screening within the first trimester can improve screening performance. Spencer and Cuckle used a data set with 261 paired samples taken between weeks 10+0 to 13+6 from unaffected pregnancies. They found a detection rate of trisomy 21 of 88.6% for a fixed false positive rate of 5%, which was only a 1.3% increase in detection rate compared to using only one sample. When using this large dataset including 27 cases of trisomy 21, we found the screening performance to be very high (detection rates 97% for a false positive rate of 3%) when using two samples (protocol 3 or 4).
The strength of our study is that it is a large study with prospectively collected data including trisomy 21 cases, and the presented results are not based on modelled data. The data set was collected at three different centres with slightly different ways of handling the samples. Thus the data do not represent a strict study set up, and therefore we believe that our study results reflect what is probably achievable in routine clinical settings. Although the data set does contain cases with trisomy 21, the number is still limited. It is possible that the correlation matrixes and the risk calculations can be improved by having access to more data. Thus before repeated testing is offered to pregnant women outside a study set up we do suggest validation of the results in independent data sets.
In conclusion we have described how the performance of the first trimester combined screening programme is affected by the time of blood sampling. Having access to an early blood sample is superior to sampling at the same time as the nuchal translucency scan. In addition it seems possible to improve the screening performance even more, if repeated blood sampling within the first trimester is performed. Optimisation of screening performance in a screening programme like first trimester combined screening for trisomy 21 which is used world wide is always relevant as even small improvements may lead to a substantial decrease in the number of invasive tests performed and subsequently in number of pregnancies affected by procedure related loss. This should however be weighed against the fact that a number of women will refrain from screening if the procedure is too complicated.
Screening performance for trisomy 21 comparing first trimester combined screening and a first trimester contingent screening protocol including ductus venosus and tricuspid flow.

Aim
Our aim was to compare the standard first trimester combined risk assessment for trisomy 21 with a contingent screening protocol including tricuspid flow and ductus venosus flow.

Material and method
The study was a two centre prospective study. Singleton women with a risk assessment > 1:1000 were included and had additional assessment of the ultrasound markers. We compared screening performance in two screening strategies; a) First trimester combined screening strategy based on the individual risk results from the routine screening test. b) A contingent screening strategy based on a combination of the routine test results and additional ultrasound markers.

Results
A total of 23 cases with trisomy 21 were included in the study population (trisomy 21 group) and 894 pregnancies with a known normal prenatal karyotype or with no registered abnormal karyotype postnatally (euploid group).

The routine first trimester combined screening strategy had in our high and intermediate risk study population an overall detection rate of 100% (23/23), as all cases with trisomy 21 in the study population had a combined risk assessment > 1:300. A total of 48.3% (443/917) had a risk at or above 1:300 based on the combined screening test where tricuspid flow and ductus venosus flow were not taken into account in the risk assessment.

Using a contingent screening strategy, where screen positives are defined as having either a risk assessment ≥ 1: 50 or a risk assessment between 1:51 and 1:1000 and either abnormal tricuspid and/or abnormal ductus flow lead in our study to a significant decrease in screen positive rate from 48.3% to 17.7% (p< 0.001). We found a decrease in detection rate from 100% to 91.3% (21/23), but this was not statistically significant (p=0.48).

Discussion
We found that inclusion of the markers in a contingent screening set up can significantly reduce the number of women who are screened positive by the first trimester combined screening strategy. This is in accordance with a number of reports from similar studies. In the majority of the published work the study populations are small sub populations often with high risk for trisomy 21. The two major studies from Fetal
Medicine Foundation however provide good evidence for the rationale of assessing additional markers in a contingent screening set up, with only about 15% of the total population needing assessment of these additional markers. Kagan et al. and Maiz et al. found that inclusion of the additional markers would, in a low risk population result in a detection rate of 96% for a screen positive rate of 3%. If our population based screen positive rate was fixed at 5%, our total population size would have been 8860 women (443/8860 = 5%). Using a contingent screening strategy the screen positive rate would be 1.8% (162/8860) and the detection rate 91.3%. These results are very similar to those found by Maiz et al. and Kagan et al.

The study was performed with a different set up in the two participating centres. As one centre was strictly investigator driven, this centre provided a dataset where almost all participants had assessments of tricuspid and ductus venosus flows. The other centre provided data from a set up where assessments of the flows were performed as part of routine practice although results of the additional markers were not included in the routine risk assessment. In the routine screening set-up, where 30 minutes are provided to perform scanning and counselling, sometimes only one of the flows was recorded or neither of them were assessed in the women eligible for inclusion. This could potentially have affected the results. Since our results are in agreement with results published by other groups, however such a possible effect does not seem to be of any major importance.

In Denmark the first trimester combined screening programme, which is offered to all pregnant women, is reported as well implemented using the first trimester combined screening strategy with high screening performance. Our suggestion would be to continue a prospective collection of data on additional ultrasound markers and continue to train sonographers in the assessment of the flows. Further studies performed in routine clinical settings which provide validation of the available algorithms are needed before we would consider using the markers routinely in our national screening programme.
Conclusion and future perspectives

The aim of this thesis was to evaluate the first trimester combined screening programme for trisomy 21 in Denmark implemented following the new national guideline in 2004. We found that the majority of pregnant women in Denmark do have a first trimester combined screening test performed. We also found that the screening performance in our national programme does meet the expectations from other prospective validations reported on the first trimester screening test. In addition the programme has, as expected, resulted in an increase in number of fetuses with trisomy 18 and trisomy 13 being diagnosed early in pregnancy.

It is essential to perform quality assurance regularly when running a screening programme like we have in Denmark. Local quality assurance includes surveillance of NT distributions, biochemical MoM distributions and screen positive rate, and fortunately this is quite easily done using the developed computer programmes, which is usually available in centres performing the screening. Calculating detection rates require follow-up on all screened fetuses during the rest of pregnancy and after delivery. It is time consuming and in some centres impossible. In the studies presented here on national data we used the local screening information and national cytogenetic register information and were able to link data using the personal registration numbers. It did require some effort to collect relevant data and after we performed the studies a national database has been established with an almost automatic collection of screening and outcome data at a national level. Thus a follow-up evaluation of the Danish National Screening programme based on data from the Danish Fetal Medicine Database is expected in the near future. We anticipate this database to become a unique and powerful tool within fetal medicine research, not only in relation to screening for the most common chromosomal abnormalities, but also in relation to screening for uncommon chromosomal abnormalities and other adverse pregnancy outcomes.

In the future screening for chromosomal abnormalities may be unnecessary, if a non-invasive diagnostic test becomes available. It is difficult to know when this will be commercially offered and therefore it is still important to look for new ways of improving the current screening strategies for chromosomal abnormalities. Another aim of this thesis was to assess two possible new screening strategies for trisomy 21. We found that screening performance can be improved by optimised timing of blood sampling and repeating the blood sampling within the first trimester. We also investigated the improvement in screening performance using a contingent screening strategy and two new ultrasound markers. We found that by using this screening strategy it would be possible to lower the screen positive rate significantly. The screen positive rate is directly related to the
number of invasive tests and thus it is important to keep it as low as possible to avoid unnecessary fetal losses. It is now evident, that different new screening strategies are promising in terms of lowering the screen positive rate. It is indeed relevant to investigate and improve the screening using different strategies, as fetal medicine centres around the world do differ in how the service is set up and in available resources. As screening for trisomy 21 becomes more and more common also in less developed countries with limited number of sonographers and possible logistic challenges in collection of blood, it is relevant to optimise and develop different contingent screening programmes in order to use existing resources best.

During the last 30-40 years screening for chromosomal abnormalities has changed from using maternal age as a single screening variable to using multiple markers and complicated risk algorithms which can provide specific individual risk assessments within the first 3 month of the pregnancy. It has become an available offer in many countries and a major advantage for many pregnant women and their fetuses as this screening strategy reduces the number of fetal losses due to unnecessary invasive procedures. In the future it may become more common also to screen for other complications in pregnancy such as preeclampsia and preterm delivery using the concept developed in screening for chromosomal abnormalities. Still it should be emphasised that also in the future screening for adverse pregnancy outcome as well as for chromosomal abnormalities should always be based on an informed choice where women on the basis of knowledge and values make individualised decisions and are free to accept or decline screening in pregnancy.
Summary in English

The main topic of the thesis is prenatal screening for trisomy 21. The thesis can be divided into 3 parts.

Part one:
The first part consists of two epidemiological studies performed to evaluate the impact of a new national screening strategy for trisomy 21 in Denmark. In the first study our objective was to evaluate the nationally implemented first trimester combined screening programme for trisomy 21. Information was collected from the Danish National Cytogenetic Register from 2000 to 2007 on the number of pre- and postnatally detected cases of trisomy 21 and number of invasive diagnostic procedures. In addition data on screening information from 2005 and 2006 from all departments in Denmark performing first trimester screening was collected. We found the number of newborns with trisomy 21 to be significantly reduced after the introduction of the new screening policy. We also found a sharp decline in the number of prenatal invasive procedures performed throughout the country. We concluded that our national screening performance based on calculated detection rates and false positive rates in 2005 and 2006 was similar to performance reported from single specialised fetal medicine centres.

In the second study we aimed at assessing, whether the new national screening programme for trisomy 21 had changed the gestational age at which trisomy 18 and trisomy 13 are detected. We collected information from the Danish National Cytogenetic Register on all prenatal and postnatal chromosome analyses for trisomy 18 or trisomy 13, registered from 1997 to 2007. We also collected information on first-trimester screening results from each department of obstetrics and gynecology performing the nuchal translucency scans. The number of trisomy 18 and trisomy 13 fetuses diagnosed before week 18 had significantly increased after the introduction of a combined first-trimester screening strategy for trisomy 21 in Denmark. In addition and consequently, the total number of fetuses diagnosed late in pregnancy and infants born with trisomy 18 or trisomy 13 had decreased significantly.

Part two:
This part of the thesis consists of a prospective study (third study) performed in collaboration with Hvidovre Hospital and Aarhus University Hospital, Skejby. Our objective was to investigate if access to a double set of the maternal serum markers Pregnancy Associated Plasma Protein-A (PAPP-A) and free β-human Chorionic Gonadotrophin (free β-hCG) could improve screening performance for trisomy 21. We collected an additional blood sample from 3918 women, who came for their nuchal translucency scan and who prior to this scan had had a blood sample taken as part of the screening test. We measured the biochemical markers PAPP-A and free β-hCG in both samples, and thus we had access to two serum marker samples from the same pregnancy. We found that repeated blood sampling with measurement of PAPP-A and free β-hCG in the combined first trimester screening could optimise screening performance for trisomy 21. The detection rate was increased from 92% to 97% for a fixed false positive rate of 3% when comparing first trimester
combined screening performance based on one blood sample taken at the same time as the nuchal scan with the performance where two blood samples were available for risk calculation.

Part three:
This was a prospective study (*fourth study*) performed in collaboration with Aarhus University Hospital, Skejby. Our aim was to examine two new ultrasound markers for trisomy 21 (abnormal ductus venosus flow and tricuspid regurgitation) in a Danish cohort, and evaluate their possible impact on screening performance. We included 917 singleton pregnant women with a risk assessment > 1:1000 based on their routinely performed first trimester combined screening test. There were 23 cases of trisomy 21 in the study population. We measured ductus venosus flow and/or tricuspid flow in relation to the nuchal translucency scan. We found that inclusion of the markers in a contingent screening setup can significantly reduce the number of women who are screened positive by the first trimester combined screening strategy. This is in accordance with a number of reports from similar studies.
Dansk resume

Afhandlingens overordnede emne er prænatal screening for trisomi 21 i Danmark. Afhandlingen kan inddeles i 3 dele.

Første del:

Anden del:
Trisomi 21 kunne forbedres ved at anvende 2 sæt tidsmæssigt adskilte blodprøver med bestemmelse af PAPP-A og frit β-hCG i begge prøver. Detektoraten steg fra 92% til 97% for en fixeret falsk positive rate på 3%, når man sammenlignede med screeningsperformance opnået ved anvendelse af en enkelt blodprøve taget samtidig med nakkefoldsskanningen.

Tredje del:
Dette var et prospektivt studie (fjerde studie) udført i samarbejde med Århus Universitetshospital, Skejby. Formålet med dette studie var at undersøge forekomsten af to nye ultralydsmarkører for trisomi 21; abnormt ductus venosus flow og abnormt flow over tricuspidalklapperne i en dansk kohorte, og evaluere deres mulige indvirkning på screeningsperformance. Vi inkluderede 917 singleton gravide med en risikovurdering > 1:1000 baseret på deres rutinemæssigt udførte første trimester screeningstest. Der var 23 tilfælde af trisomi 21 i den undersøgte population. Vi målte ductus venosus flow og/eller tricuspidal flow i forbindelse med nakkefoldsskanningen. Vi fandt, at det er muligt at forbedre risikovurderingen for trisomy 21 ved at inkludere de to markører. Dette er i overensstemmelse med resultater fra lignende internationale studier.
References

Ref Type: Internet Communication

(10) DSOG Guideline CVS og amniocentese 2009 http://www.dsog.dk/sandbjerg/foeto/AC%20og%20CVS%202009%20forslag%2014%201%202009.pdf.
Ref Type: Internet Communication

(30) http://www.statistikbanken.dk/
Ref Type: Internet Communication

(120) Christiansen M, Olesen LS. An increase in cost-effectiveness of first trimester maternal screening programmes for fetal chromosome anomalies is obtained by contingent testing. Prenat Diagn 2002; 22(6):482-486.

(133) Wright D, Syngelaki A, Staboulidou I, Cruz JJ, Nicolaides KH. Screening for trisomies in dichorionic twins by measurement of fetal nuchal translucency thickness according to the mixture model. Prenat Diagn 2011; 31(1):16-21.

(170) Christiansen M, Pihl K, Hedley PL, Gjerris AC, Lind PO, Larsen SO et al. ADAM 12 may be used to reduce the false positive rate of first trimester combined screening for Down syndrome. Prenat Diagn 2010; 30(2):110-114.

Ref Type: Internet Communication

Ref Type: Internet Communication

(210) Solberg B. [Informed choice--important also for Norwegian pregnant women]. Tidsskr Nor Laegeforen 2009; 129(13):1346-1348.

64

www.DFMS.dk (The Society for Fetal Medicine in Denmark). Ref Type: Internet Communication

DSOG Biometriguideline

DSOG Nakkefoldsguideline
Appendices (paper 1-4)

Paper 1

Paper 2

Paper 3

Paper 4
Screening performance for trisomy 21 comparing first trimester combined screening and a first trimester contingent screening protocol including ductus venosus and tricuspid flow. Ekelund CK, Petersen OB, Sundberg K, Pedersen F, Vogel I, Tabor A. Submitted October 2011 to Prenatal diagnosis, currently undergoing revision
Impact of a new national screening policy for Down’s syndrome in Denmark: population based cohort study

Charlotte K Ekelund, research assistant,1 Finn Stener Jørgensen, consultant,2 Olav Bjørn Petersen, consultant,3 Karin Sundberg, consultant,1 Ann Tabor, professor,1,4 Danish Fetal Medicine Research Group

ABSTRACT

Objectives To evaluate the impact of a screening strategy in the first trimester, introduced in Denmark during 2004-6, on the number of infants born with Down’s syndrome and the number of chorionic villus samplings and amniocenteses, and to determine detection and false positive rates in the screened population in 2005 and 2006.

Design Population based cohort study.

Setting 19 Danish departments of gynaecology and obstetrics and a central cytogenetic registry 2000-7.

Participants 65 000 pregnancies per year.

Main outcome measures The primary outcomes measured were number of fetuses and newborn infants with Down’s syndrome diagnosed prenatally and postnatally and number of chorionic villus samplings and amniocenteses carried out. Secondary outcomes measured were number of women screened in 2005 and 2006, screen positive rate, and information on screening in 2005 and 2006 for infants with a postnatal diagnosis of Down’s syndrome.

Results The number of infants born with Down’s syndrome decreased from 55-65 per year during 2000-4 to 31 in 2005 and 32 in 2006. The total number of chorionic villus samplings and amniocenteses carried out decreased from 7524 in 2000 to 3510 in 2006. The detection rate in the screened population in 2005 was 86% (95% confidence interval 79% to 92%) and in 2006 was 93% (87% to 97%). The corresponding false positive rates were 3.9% (3.7% to 4.1%) and 3.3% (3.1% to 3.4%).

Conclusion The introduction of a combined risk assessment during the first trimester at a national level in Denmark halved the number of infants born with Down’s syndrome. The strategy also resulted in a sharp decline in the number of chorionic villus samplings and amniocenteses carried out, even before full implementation of the policy.

INTRODUCTION

In September 2004 the Danish National Board of Health issued new guidelines for prenatal screening and diagnosis.1 These recommended that pregnant women should be offered information about screening methods in pregnancy and, if desired, a combined risk assessment for Down’s syndrome in the first trimester based on a combination of maternal age, nuchal translucency scanning, and a biochemical test for serum free β human chorionic gonadotrophin and pregnancy associated plasma protein A, called the double test. On the basis of this assessment women were to be informed about their risk (given as odds, such as 1:1250) of carrying a fetus with Down’s syndrome. Women with a risk above a defined cut-off (for example, 1:300) were to be offered an invasive diagnostic procedure (chorionic villus sampling or amniocentesis). According to the previous guidelines from the Danish National Board of Health, pregnant women were to be offered chorionic villus sampling or amniocentesis if they were aged 35 or more, were at increased risk of carrying a fetus with Down’s syndrome on the basis of serum screening using a triple test in the second trimester, or were at risk of an inherited disease. In 2000 the uptake of invasive diagnostic testing in women aged 35 or more was less than 50%, whereas around 20% of all pregnant women had nuchal translucency ultrasonography.2 The triple test was not offered to all women but was done in about 10% of the population. Scans for malformations in the second trimester were offered to 28% of women.2

All 15 Danish counties decided to follow the guidelines from 2004 and introduce combined risk assessment in the first trimester. The cost of introducing the programme (ultrasound and laboratory equipment, training, wages for new staff) was covered by the counties and local hospitals. In 2004-6 the risk cut-off for referral to invasive diagnostic procedures varied between counties, from 1:250 to 1:400. The new policy was expected to detect 90% of fetuses with Down’s syndrome at a 5% false positive rate on the basis of calculations made on the Danish population in 2001.

We evaluated the impact at a national level of the introduction of this new screening strategy on the number of infants born with Down’s syndrome and on the number of chorionic villus samplings and amniocenteses. We also assessed whether the detection and false positive rates in the screened population for 2005 and 2006 were as expected.

METHODS

Denmark has a population of 5.4 million primarily white people and about 65 000 liveborn infants per
No of liveborn infants | Number of liveborn infants and mean maternal age at delivery in Denmark, 2000-6

<table>
<thead>
<tr>
<th>Year</th>
<th>Liveborn infants</th>
<th>Mean maternal age at delivery</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>66 000</td>
<td>29.9</td>
</tr>
<tr>
<td>2001</td>
<td>65 500</td>
<td>29.7</td>
</tr>
<tr>
<td>2002</td>
<td>65 000</td>
<td>29.5</td>
</tr>
<tr>
<td>2003</td>
<td>64 500</td>
<td>29.3</td>
</tr>
<tr>
<td>2004</td>
<td>64 000</td>
<td>29.1</td>
</tr>
<tr>
<td>2005</td>
<td>63 500</td>
<td>29.0</td>
</tr>
<tr>
<td>2006</td>
<td>63 000</td>
<td>28.9</td>
</tr>
</tbody>
</table>

Evaluation of screening performance in 2005 and 2006

From the 19 obstetrics and gynaecology departments we collected information on the number of women who had a risk assessment for Down’s syndrome when a first trimester screening test had been done in 2005 or 2006, either as the optimal combined test (maternal age, nuchal translucency scan, and biochemistry) or by a combination of maternal age and nuchal translucency scan or biochemistry. To enable us to evaluate the screen positive rate, the departments reported the number of women given a risk assessment of 1:300 or more at the time of screening. We chose this uniform cut-off to simplify the presentation of data, despite some departments using a slightly different cut-off for referral to invasive diagnostic testing.

In the calculation of screening performance we included fetuses and newborn infants with Down’s syndrome during 2005-7 when a first trimester screening test had been carried out in the first trimester. Information about gestational age at delivery for all infants with Down’s syndrome during 2005-7 was obtained from the Danish National Board of Health.

We cross checked the personal registration numbers of women who had given birth to an infant with Down’s syndrome during 2005-7 with all Astraia database servers in Denmark to obtain information on whether screening had been carried out in the first trimester. Information about screening was also requested in those cases where Down’s syndrome was diagnosed prenatally by an invasive procedure carried out for indications other than an increased risk of Down’s syndrome.

RESULTS

A combined risk assessment in the first trimester was introduced successively in Denmark. In January 2005
nine of the 15 counties (60%) offered women screening, increasing to 13 counties (87%) by January 2006. By June 2006 the whole of the country was covered.

The yearly number of deliveries in Denmark decreased slightly during 2000-6 (fig 1), whereas the mean maternal age at delivery increased from 29.7 years in 2000 to 30.3 years in 2006. Based on the actual distribution of maternal age and if no prenatal screening or invasive diagnosis had been carried out, the estimated expected number of infants with Down’s syndrome increased from 121 in 2000 to 132 in 2005 and 135 in 2006.

Number of newborn infants with Down’s syndrome

The number of newborn infants with Down’s syndrome decreased from 55-65 per year in 2000-4 to 31 in 2005 and 32 in 2006. The total number of fetuses and newborn infants with Down’s syndrome diagnosed prenatally or postnatally in 2000-3 was stable at around 135-140 per year, with an increase to 157 in 2004, 161 in 2005, and 149 in 2006 (fig 2). The proportion of cases diagnosed prenatally increased from 53-61% during 2000-4, to 81% in 2005 and 79% in 2006.

Prenatal diagnostic procedure rate

The number of prenatal diagnostic procedures (chorionic villus samplings or amniocenteses) decreased from 7524 in 2000 to 3510 in 2006 (fig 3). The number of chorionic villus samplings decreased from 3322 in 2000 to 2302 in 2006, while the number of amniocenteses carried out decreased from 4202 to 1208 in the same years. This corresponds to an increase in the proportion of chorionic villus samplings from 44% to 66%.

Screening performance in 2005 and 2006

About 65 000 women were pregnant in Denmark during 2005-6. In 2005 40 815 women (62.8%) had a risk assessment carried out in the first trimester, increasing to 54 830 (84.4%) in 2006. The remaining women had no risk assessment done because they were offered an invasive diagnostic test for reasons other than a screen positive test result, declined screening, or failed to receive an offer for reasons such as residency in a county not yet offering screening.

In 2005 a total of 1706 women (4.2%) had a risk of 1:300 or more (screen positive rate) and among these, 1388 women (81.4%) decided to have a diagnostic test (fig 4). Seventy two per cent of the diagnostic procedures done because of a screen positive risk assessment were chorionic villus samplings, the remainder were amniocenteses. In 2006 a total of 1899 women (3.5%) had a risk of 1:300 or more and 1704 (89.7%) underwent diagnostic testing as a consequence of the screening result. Seventy six per cent of the diagnostic procedures carried out because of a screen positive risk assessment were chorionic villus samplings.

In the population screened in 2005 the detection rate of Down’s syndrome was 86% (95% confidence interval 79% to 92%)—(101+3)/(101+3+16+1)—as 104 of 121 women carrying a fetus with Down’s syndrome were screened true positive (fig 4). Thus 17

Table: Data on screening variables from 19 pregnancies in 2005 and 11 in 2006 resulting in newborn infants with Down’s syndrome in Denmark

<table>
<thead>
<tr>
<th>Year (years)</th>
<th>Nuchal translucency (mm)</th>
<th>Biochemistry performed</th>
<th>Risk assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1.3</td>
<td>Yes</td>
<td>1:23641</td>
</tr>
<tr>
<td>26</td>
<td>2.4</td>
<td>Yes</td>
<td>1:793</td>
</tr>
<tr>
<td>28</td>
<td>1.5</td>
<td>Yes</td>
<td>1:2838</td>
</tr>
<tr>
<td>28</td>
<td>1.5</td>
<td>Yes</td>
<td>1:2598</td>
</tr>
<tr>
<td>29</td>
<td>1.7</td>
<td>No</td>
<td>1:4954</td>
</tr>
<tr>
<td>29</td>
<td>1.8</td>
<td>Yes</td>
<td>1:2980</td>
</tr>
<tr>
<td>30</td>
<td>1.9</td>
<td>Yes</td>
<td>1:1831</td>
</tr>
<tr>
<td>30</td>
<td>1.8</td>
<td>Yes</td>
<td>1:195†</td>
</tr>
<tr>
<td>32</td>
<td>1.8</td>
<td>Yes</td>
<td>1:627</td>
</tr>
<tr>
<td>32</td>
<td>1.8</td>
<td>Yes</td>
<td>1:3193</td>
</tr>
<tr>
<td>34</td>
<td>2.3</td>
<td>Yes</td>
<td>1:682</td>
</tr>
<tr>
<td>35</td>
<td>Reported as "normal"</td>
<td>No</td>
<td>1:1229</td>
</tr>
<tr>
<td>35</td>
<td>2.0</td>
<td>Yes</td>
<td>1:775</td>
</tr>
<tr>
<td>35</td>
<td>2.3</td>
<td>Yes</td>
<td>1:66†</td>
</tr>
<tr>
<td>36</td>
<td>1.9</td>
<td>Yes</td>
<td>1:3847</td>
</tr>
<tr>
<td>40</td>
<td>2.2</td>
<td>Yes</td>
<td>1:672</td>
</tr>
<tr>
<td>40</td>
<td>—</td>
<td>Yes</td>
<td>1:3‡</td>
</tr>
<tr>
<td>41</td>
<td>2.0</td>
<td>Yes</td>
<td>1:466</td>
</tr>
<tr>
<td>46</td>
<td>2.0</td>
<td>Yes</td>
<td>1:729</td>
</tr>
<tr>
<td>2006:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1.6</td>
<td>Yes</td>
<td>1:1707</td>
</tr>
<tr>
<td>25</td>
<td>3.0</td>
<td>Yes</td>
<td>1:322</td>
</tr>
<tr>
<td>27</td>
<td>2.9</td>
<td>Yes</td>
<td>1:492</td>
</tr>
<tr>
<td>30</td>
<td>1.8</td>
<td>Yes</td>
<td>1:1764</td>
</tr>
<tr>
<td>31</td>
<td>1.7</td>
<td>Yes</td>
<td>1:79†</td>
</tr>
<tr>
<td>33</td>
<td>1.8</td>
<td>Yes</td>
<td>1:7693</td>
</tr>
<tr>
<td>34</td>
<td>1.5</td>
<td>Yes</td>
<td>1:3246</td>
</tr>
<tr>
<td>35</td>
<td>3.0</td>
<td>Yes</td>
<td>1:66†</td>
</tr>
<tr>
<td>37</td>
<td>6.3</td>
<td>Yes</td>
<td>1:5†</td>
</tr>
<tr>
<td>37</td>
<td>2.3</td>
<td>No (twins)</td>
<td>1:206†</td>
</tr>
<tr>
<td>40</td>
<td>2.3</td>
<td>Yes</td>
<td>1:79†</td>
</tr>
</tbody>
</table>

*Maternal age at time of nuchal translucency scan. If no scan was done then maternal age at week 12+4 is reported.
†Offered diagnostic testing.
‡Gestational age at screening 14+2, offered diagnostic testing.
women received a false negative screening result. One of these women had an amniocentesis on suspicion of a malformation after the 18-20 week scan, and the pregnancy was terminated (fig 4). An adjusted detection rate taking into account fetal loss from screening to time of birth (estimated as 25%4) was 82% (95% confidence interval 73% to 90%). The false positive rate was 3.9% (3.7% to 4.1%).

In 2006 the detection rate was 93% (87% to 97%)—(92+5)/(92+4+6+1)—as only seven women received a false negative screening result. One of these women had an amniocentesis on suspicion of a malformation, and the pregnancy was terminated (fig 5). The adjusted detection rate taking fetal loss into account was estimated at 92% (83% to 97%). The false positive rate was 3.3% (3.1% to 3.4%).

The odds of being affected (carrying a fetus with Down’s syndrome) after receiving a screen positive risk assessment during the first trimester were 1:16 in 2005 and 1:20 in 2006. The odds of being affected after receiving a screen negative result were 1:2301 in 2005 and 1:7562 in 2006.

The odds of being affected after undergoing chorionic villus sampling or amniocentesis owing to advanced maternal age were similar in 2005 and 2006 (1:65 and 1:75); 15 fetuses with Down’s syndrome were diagnosed among 980 women in 2005 and eight fetuses among 600 women in 2006. Indications other than advanced maternal age or high risk after screening for undergoing chorionic villus sampling or amniocentesis were mainly family history of chromosomal abnormality, mental retardation or monogenic inherited disease, or a high risk on the basis of serum screened in the second trimester.

Thirty infants with Down’s syndrome were born to mothers who had had a risk assessment done in the first trimester during 2005 and 2006. The table gives the details of the risk assessments.

DISCUSSION

Even before full implementation of the policy for combined risk assessment during the first trimester in Denmark, the number of infants born with Down’s syndrome decreased by about 50% and the number of cases diagnosed prenatally increased by around 30%.

The number of fetuses and newborn infants with Down’s syndrome diagnosed prenatally or postnatally increased in the period 2000-5, with a slight decline in 2006 (fig 2). This was partly due to increasing maternal age, but was as expected because more fetuses with Down’s syndrome are lost spontaneously than those that are chromosally normal. This increased rate has been estimated at around 25% from week 14 to term.4

Based on the known distribution of maternal age at delivery in 2005 and 2006, 132 and 135 infants with Down’s syndrome would have been expected in our population of 65 000 liveborn infants if the mothers had no prenatal intervention. Down’s syndrome was diagnosed in 31 infants postnatally and 130 prenatally in 2005 and in 32 infants postnatally and 117 prenatally in 2006. Given a rate for fetal loss of 25%, this corresponds to 129 infants with Down’s syndrome diagnosed postnatally in 2005 and 120 diagnosed postnatally in 2006. In 2005 the expected numbers

Table

<table>
<thead>
<tr>
<th>Estimated number of pregnancies eligible for screening in first trimester 2005 (approximately 65 000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First trimester risk assessment (n=40 815)</td>
</tr>
<tr>
<td>Screen positive risk ≥1:300 (n=1706)</td>
</tr>
<tr>
<td>Screen negative risk <1:300 (n=39 109)</td>
</tr>
<tr>
<td>Invasive procedure (n=1388)</td>
</tr>
<tr>
<td>No invasive procedure (n=318)</td>
</tr>
<tr>
<td>Down’s syndrome diagnosed prenatally (n=101)</td>
</tr>
<tr>
<td>Down’s syndrome diagnosed postnatally (n=3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No first trimester screening (approximately 24 000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invasive procedure (n=2274)</td>
</tr>
<tr>
<td>No invasive procedure (approximately 22 000)</td>
</tr>
<tr>
<td>Invasive procedure due to advanced maternal age (n=980)</td>
</tr>
<tr>
<td>Invasive procedure on other indications (n=1294)</td>
</tr>
<tr>
<td>Down’s syndrome diagnosed postnatally (n=17)</td>
</tr>
</tbody>
</table>

Fig 4 | Number of fetuses and newborn infants with Down’s syndrome diagnosed prenatally or postnatally according to screening results in Denmark, 2005. Invasive procedures are chorionic villus samplings or amniocenteses.
were close to those reported, whereas in 2006 the reported number was lower than expected. This may be due to chance fluctuation, as we believe follow-up is complete. The follow-up time for the numbers reported from 2006 is, however, relatively short and a few cases may therefore still be reported.

In 2005 national screening was not fully implemented. One third of the women were either not offered screening or declined. These women gave birth to a total of 17 infants with Down’s syndrome. In 2006 the proportion of non-screened women decreased to 15%, as screening was then available for most women. About 8500 women who were not offered screening or declined screening or a diagnostic test in 2006 gave birth to a total of 11 infants with Down’s syndrome.

The national guidelines on prenatal screening emphasise that risk assessment for Down’s syndrome should be done only if women choose the test on the basis of an informed choice. Therefore despite the programme now being accessible to all pregnant women in Denmark, it is expected that a proportion will still choose not to be screened. The size of this proportion when screening is fully available remains to be established; however, in 2005 only 2% of the population in two counties declined screening. Studies on Danish women’s attitude, knowledge about screening, and choice of test are ongoing.

We found that the number of prenatal diagnostic tests (chorionic villus samplings and amniocenteses) carried out yearly decreased by more than 50% during 2000-6. A decrease in the number of prenatal diagnostic procedures could be seen even before the policy was changed, probably because pregnant women became aware of alternative prenatal investigations such as nuchal translucency scanning (fig 3). This was certainly the case in and around Copenhagen, when a prospective study of around 10 000 women was done in 1998-2001. Nuchal translucency scanning was introduced in some departments even before the national guidelines were changed.

In 2005 and 2006 about 3% of women still had an invasive diagnostic procedure done because of indications other than a screen positive test result, with a tendency towards a reduced number of tests from 2005 to 2006 (2274 women in 2005, 1805 in 2006). The decrease was mainly due to fewer women choosing invasive diagnostic tests on the basis of advanced maternal age, as 980 invasive procedures were carried out for that indication in 2005 but decreased to 600 in 2006. The relatively high number of women choosing chorionic villus sampling or amniocentesis was probably partly due to lack of implementation of the new screening programme. It is also possible that women who had a diagnostic procedure for a previous pregnancy because they were aged 35 or more may have requested a diagnostic test again. When the new screening strategy based on ultrasound and biochemistry has been available for some years we expect the number of invasive diagnostic tests done because of advanced maternal age to decrease even further.

We found that 10-20% of women with a screen positive test result did not undergo an invasive diagnostic test. This is in accordance with reports from the Copenhagen First Trimester Study. For
RESEARCH

WHAT IS ALREADY KNOWN ON THIS TOPIC

Many countries are currently trying to achieve national screening strategies for Down’s syndrome

None has described how a combined screening strategy in the first trimester affects numbers of infants born with Down’s syndrome or rate of invasive procedures

Detection rates and false positive rates for the combined first trimester risk assessment have been reported only from specialised centres or from regional experience

WHAT THIS STUDY ADDS

After implementation of a national screening policy in Denmark, the number of infants born with Down’s syndrome and the rate of invasive procedures was noticeably reduced

The screening strategy achieved high detection rates and low false positive rates

various reasons (advanced maternal age, conception by assisted reproduction technologies, or risk near the cut-off) some women do not want an invasive diagnostic test, probably because of the associated risk of miscarriage.

The difference in odds of carrying a fetus with Down’s syndrome for those who were tested because of a screen positive risk assessment [1:16 in 2005, 1:20 in 2006] compared with that of being tested because of advanced maternal age [1:65 in 2005, 1:75 in 2006] clearly illustrates the rationale in screening using a combined risk assessment in the first trimester. As expected, this strategy reduces the number of unnecessary diagnostic procedures. The procedure related risk of miscarriage after chorionic villus sampling or amniocentesis is reported to be 1%.6 In the group of women having an invasive diagnostic test done because of advanced maternal age in 2005 and 2006 16 chromosomally normal fetuses would then have been miscarried to diagnose 23 cases of Down’s syndrome. This should be compared with the 31 fetuses possibly miscarried to diagnose 193 cases of Down’s syndrome in the group of women with a screen positive test result. Combined risk assessment in the first trimester is not only a more effective screening method than maternal age alone, it also reduces the risk of miscarrying chromosomally normal fetuses when used as reason to be referred for testing instead of maternal age. Thus the false positive rate of prenatal diagnostic testing has been much reduced by changing the selection criterion from maternal age to risk assessment in the first trimester. The false negative rate has also changed: previously those women who chose to have chorionic villus sampling or amniocentesis because of advanced maternal age had a diagnostic test. Currently women choose to have a screening test; 0.4 women per 1000 in 2005 and 0.1 per 1000 in 2006 subsequently delivered a child with Down’s syndrome, despite having a risk assessment below the 1:300 cut-off. These few women may feel more resentment towards the system that failed them than those women who chose not to have an invasive diagnostic test because of advanced maternal age. This emphasises the importance of informing all women about the limitations of screening.

For false positive rates of 3.9% and 3.3% in the screened populations we found detection rates for Down’s syndrome of 80% in 2005 and 93% in 2006. This is in accordance with the screening performance expected by the Danish National Board of Health when it decided to implement this new screening strategy. This performance may be considered high, especially as the programme in 2005 and 2006 in many centres used a completely new screening method. Furthermore, we report the result of routine clinical practice, where not all risk assessments are based on the optimal variables (combination of maternal age, nuchal translucency scan, and biochemistry) as some are given only on maternal age and nuchal translucency scan or biochemistry. Other authors have also reported screening results achieved in routine clinical practice in up to 13 centres, with detection rates between 83% and 93% and false positive rates between 3.9% and 5.9%.13,14 One study collected data from 44 centres in the Netherlands and found a detection rate of 71% for a false positive rate of 4.7%.14 The authors explain the relatively low detection rate by too small measurements used for nuchal translucency, and expect to improve the detection rate by establishing quality assurance on the measurements. In a large prospective multicentre study the detection rate using a combined screening programme in the first trimester was 92.6% for a false positive rate of 5.2%.15 Our data show that it is possible to introduce this screening strategy in as many as 19 different centres and still obtain national detection and false positive rates similar to those from specialised centres.

It is well known that implementation of new screening strategies requires effort, and many countries are currently facing various problems in trying to achieve a national strategy.16–18 In Denmark, with its public, free of charge hospital system, we have succeeded in establishing a strong national organisation for fetal medicine. Recruitment and training of sonographers as well as quality control are in accordance with the guidelines from the Fetal Medicine Foundation in London (www.fetalmedicine.com). We have implemented national guidelines on screening in the first trimester, and from 1 January 2007 a common cut-off of 1:300 for referral to invasive diagnostic testing at the time of screening. Furthermore, the use of the same database software in all departments allows national data to be merged. A national quality database has been established that merges data from all fetal medicine units, the Danish national cytogenetic registry, and the national patient registry. This will allow follow-up of all screened women at a national level, as well as monitoring of detection rates, false positive rates, and invasive testing rates, a quality control that is considered essential after the implementation of a new screening programme.

Members of the Danish Fetal Medicine Research Group are: Hans Jakob Andersen, Jeanette Christensen, Vibeke Erbsk, Richard Farlie, Carsten Henniques, Annette Wind Olesen, Anni Holmso, Lisa Nørup Jensen, Anette Kristensen, Torben Larsen, Hedvig Poulsen, Jan Ramb, Lillian Skibsted, Peter Skovbo, Steffen Sommer, Lene Sperling, Susanne

BMJ | ONLINE FIRST | bmj.com
Vemmelund Jau, Helle Zingenberg. We thank Jan Hansen for retrieval of data from the Danish Central Cytogenetic Registry, Kirsten Rasmussen for retrieval of data from the Genetic Database of Funen, Steen Rasmussen (Danish National Board of Health) for providing gestational age at delivery in cases where no screening was done, and the departments of clinical biochemistry for analysing the biochemical samples used in the screening programme.

Contributors: AT and CKE planned and did the study in cooperation with FSJ, OBP, and KS. CKE and AT wrote the manuscript and are guarantors. Hans Jakob Andersen, Jeanette Christensen, Vibeke Ensbak, Richard Farlie, Carsten Henquels, Annette Wind Olesen, Anni Holmskov, Lisa Neerup Jensen, FSI, Anette Kristiansen, Torben Larsen, OBP, Hedvig Poulsen, Jan Ramb, Lillian Skibsted, Peter Skovbo, Steffen Sommer, Lene Sperling, KS, Susanne Vemmelund Jau and Helle Zingenberg retrieved data from the local Astraia servers and reviewed and accepted the final manuscript.

Funding: None.

Competing interests: None declared.

Ethical approval: This study was approved by the Danish Data Protection Agency and Danish National Board of Health.

Provenance and peer review: Not commissioned; externally peer reviewed.

Accepted: 30 September 2008
First-trimester screening for trisomy 21 in Denmark: implications for detection and birth rates of trisomy 18 and trisomy 13

C. K. EKELUND*, O. B. PETERSEN†, L. SKIBSTED‡§, S. KJAERGAARD¶, I. VOGEL**, A. TABOR*§ and the Danish Fetal Medicine Research Group

*Department of Fetal Medicine, Rigshospitalet, Copenhagen, Denmark; †Department of Fetal Medicine, Skejby University Hospital, Aarhus, Denmark; ‡Department of Fetal Medicine, Roskilde Sygehus, Roskilde, Denmark; §Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; ¶Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark; **Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark

KEYWORDS: birth rates; Down syndrome; first-trimester screening; trisomy 13; trisomy 18

ABSTRACT

Objectives In Denmark a new national guideline for prenatal screening and diagnosis was issued in 2004 according to which all pregnant women should be offered a first-trimester combined risk assessment for trisomy 21 (T21). The aim of this study was to investigate whether the new screening strategy for T21 has changed the gestational age at which trisomy 18 (T18) and trisomy 13 (T13) are diagnosed prenatally, and the number of infants born with T18 or T13.

Methods We collected from the Danish Cytogenetic Central Register information on all prenatal and postnatal chromosome analyses for T18 or T13, registered from 1997 to 2007. Information on first-trimester screening results was collected from each department of obstetrics and gynecology performing the nuchal translucency scans. The cut-off used for referral to invasive diagnostic testing for T21 and for T18/T13 was 1 : 300 and 1 : 150 at screening, respectively.

Results In total, there were 435 cases with T18 and 168 cases with T13 between 1997 and 2007 in Denmark. The estimated incidence of T18 and T13 at the time of delivery was calculated as 2.5 and 1.6 per 10 000 deliveries, respectively. The number (proportion) of cases diagnosed before week 18 increased significantly, from 63 (59.4%) in 1997 and 1998 to 90 (80.4%) in 2006 and 2007 (P < 0.0001). For women participating in first-trimester risk assessment in 2006 and 2007, the detection rate of T18 and T13 was 78.8% (95% CI, 71.0–86.7%).

Conclusion The number of T18 and T13 fetuses diagnosed before week 18 increased significantly after the introduction of a combined first-trimester screening strategy for T21 in Denmark. In addition, the total number of fetuses diagnosed late in pregnancy and infants born with T18 or T13 decreased significantly. The national detection rate for T18 and T13 in the first trimester is comparable with detection rates found in modeled datasets and other prospective studies. Copyright © 2011 ISUOG. Published by John Wiley & Sons, Ltd.

INTRODUCTION

Trisomy 18 (T18) and trisomy 13 (T13) are, after trisomy 21 (T21), the most common autosomal trisomies observed in fetuses and newborns. They are associated with severe malformations and mental retardation and with a very high rate of intrauterine death. The majority of infants born with T18 or T13 survive for only a few days.

It is well established that it is possible to screen for T21 in pregnancy using ultrasound and biochemical markers, and additional screening for T18 and T13 can be performed using the same markers. These markers are maternal age, fetal nuchal translucency thickness, maternal-serum pregnancy-associated plasma protein-A (PAPP-A) and maternal-serum free beta-human chorionic gonadotropin (β-hCG). T21, T18 and T13 are...
all associated with increased maternal age, increased nuchal translucency and decreased PAPP-A. T18 and T13 are also associated with a decreased level of free \(\beta \)-hCG\(^7\). It has been estimated that up to 95% of fetuses with T18 or T13 can be detected using specific T18 and T13 risk algorithms in the first trimester\(^1\).

Before 2004, Danish women were offered diagnostic testing (chorionic villus sampling (CVS) or amniocentesis (AC)) if they were considered to be at increased risk of carrying a fetus with T21 on the basis of maternal age (\(\geq 35 \) years of age), on serum screening results of the triple test in the second trimester or if the fetus was at risk of a diagnosable inherited disease. The new national guideline for Prenatal Screening and Diagnosis issued in 2004 by the National Board of Health recommends that all pregnant women should be offered information about screening methods in pregnancy, and if desired, a first-trimester combined risk assessment for T21. In 2006, 84% of the pregnant women in Denmark underwent first-trimester risk assessment, and this proportion increased to more than 90% in 2007\(^10\).\(^13\).

The primary aim of this study was to investigate whether the introduction of the new screening strategy for T21 in Denmark has resulted in an earlier diagnosis of T18 and T13 in pregnancy, and in a reduction in the number of infants born with T18 or T13. In addition, we wanted to specifically evaluate the first-trimester combined screening performance for T18 and T13 in 2006 and 2007.

SUBJECTS AND METHODS

We collected information on the overall birth rate and mean maternal age at delivery from 1987 to 2007 through Statistic Denmark (www.statistikbanken.dk, June 2010). To be able to compare our observed incidence of T18 and T13 with those reported in previous publications where the incidence at time of delivery is reported, we calculated the estimated incidence at time of delivery using the observed number of cases, the gestational age at diagnosis and the estimated fetal loss rates given by Morris et al.\(^1\).

To compare our observed incidence of T18 and T13 with the expected incidence in the Danish pregnant population we used the estimates of age-specific risks for T18 and T13 provided by Snijders et al.\(^14\) and the Danish maternal age distribution for 1997–2007 provided by Statistic Denmark.

We collected information on all prenatal and postnatal chromosome analyses for T18 or T13, registered from 1997 to 2007, from the Danish Cytogenetic Central Register (DCCR). The DCCR receives a copy of all chromosome analysis results from the five cytogenetic laboratories in Denmark. Chromosome analyses include counting at least 10 metaphases, three of which are fully karyotyped. The prenatal cases with T18 or T13 were diagnosed on tissue from prenatal invasive diagnostic tests (CVS or AC) or from induced abortions. The few cases registered each year in relation to miscarriages were excluded, as chromosome analyses of miscarriages are only performed sporadically and do not reflect the actual number of cases. Cases detected with mosaicism were not included in the study population.

In Denmark, all persons have a unique and lifelong personal identification number, under which all reports to national registers are made. For each case we retrieved the maternal personal identification number and the indication for performing a chromosome analysis. The time of sampling was also retrieved: either the gestational age at which the sample was collected for karyotyping, in cases of prenatal testing; or the age of the infant, in cases of postnatal testing. In addition, we collected the date of death for the infants born with T18 or T13. Maternal age at sampling was calculated using maternal birth date and sampling date.

We divided all T18 and T13 cases into three groups: those diagnosed between gestational weeks 18 and 22; and those diagnosed after gestational week 22 or postnatally. The second-trimester anomaly scans in Denmark are performed in weeks 19–20. The 18-week cut-off defining early diagnosis was chosen because we anticipated that the first-trimester combined screening strategy in Denmark would increase the number of cases diagnosed before the anomaly scan.

To assess the first-trimester screening performance, we collected information, from the different hospitals’ ultrasound databases (Astraia), on the screening results of mothers whose fetus or infant had T18 or T13 in 2006 and 2007. We used the unique personal identification number to merge the data from the DCCR and the Astraia databases. Following implementation of the national screening strategy, all obstetric departments in Denmark have offered first-trimester combined risk assessment since June 2006\(^10\). The cut-off for referral to invasive diagnostic testing (CVS or AC) for T21 and T18/T13, used in the majority of departments, is 1:300 and 1:150 at screening, respectively. The new guideline also recommended a second-trimester anomaly scan for all pregnant women. Prior to 2004, second-trimester anomaly scans were only offered in some regions in Denmark.

Differences between binary groups were compared using the chi-square test and \(P < 0.05 \) was considered significant.

The study was approved by the Data Protection Agency in Denmark (2010-41-4799).

RESULTS

During the study period (1997–2007) a total of 719,215 infants were liveborn in Denmark. Mean maternal age at delivery has increased during the last 20 years in Denmark, from 26.5 years in 1987 to 29.4 years in 1997 and 30.4 years in 2007. Figure 1 shows the number of infants born each year and mean maternal age at delivery in the period 1997 to 2007 in Denmark.

The estimated incidences of T18 and T13 livebirths in the Danish pregnant population in the time-period 1997–2007, given the known maternal age distribution and estimated risk provided by Snijders et al.\(^14\), were 1.7
per 10,000 deliveries for T18 and 0.7 per 10,000 deliveries for T13.

There were 435 cases with T18 and 168 cases with T13 diagnosed prenatally or postnatally in the period 1997–2007. The estimated incidence of T18 at the time of delivery, using the number of observed cases and taking into account the estimated fetal loss rates reported by Morris et al., was calculated as 2.5 per 10,000 deliveries. For T13 the estimated incidence was 1.6 per 10,000 deliveries.

The median maternal age at diagnosis of a fetus or infant with T18 or T13 was 35 (range, 17–48) years and 33 (range, 19–47) years, respectively.

The median survival for infants born with T18 was 5 (range, 0–554) days, and 30% survived for longer than 1 month. At the time of follow-up (December 2009), one child born in 2001 was still alive (diagnosed postnatally with T18 by chromosome analysis of blood). The median survival for infants born with T13 was 4.5 (range, 0–396) days, and 24% survived for longer than 1 month.

The number of T18 and T13 cases diagnosed prenatally after week 22, or postnatally, decreased significantly, from 34 in 1997 and 1998 to seven in 2006 and 2007 (P < 0.0001). In addition, the number of cases diagnosed before week 18 increased significantly, from 63 in 1997 and 1998 to 90 in 2006 and 2007 (P < 0.001). The number of cases diagnosed in the second trimester, from weeks 18–22, did not change significantly over the 11-year period (Figure 2).

In 2006 and 2007, 118 cases of T18 or T13 (88 cases of T18 and 30 cases of T13) were diagnosed prenatally or postnatally. Fourteen women had invasive testing performed for other indications and did not undergo first-trimester screening. The remaining 104 women underwent first-trimester screening. In 11 cases no risk assessment was performed, as major fetal malformations were detected when performing the nuchal translucency scan and termination of pregnancy was chosen. Therefore, 93 women had a first-trimester risk assessment performed. Figure 3 gives an overview of the screening results.

The detection rate of T18 and T13 for women participating in first-trimester risk assessment was 78.8% (95% CI, 71.0–86.7%) (82 detected out of 104). The overall detection rate of T18 and T13 in Denmark in 2006 and 2007 was 90.4% (95% CI, 84.7–96.1%) (94 out of 104) when including the fetuses diagnosed in the second trimester. Eight women, who were first-trimester screen negative, did not have a second-trimester scan performed: in seven cases because CVS was performed for other indications despite the negative screening result, and in one case an anomaly scan was not offered (as in 2006 it was not offered by all obstetric departments in Denmark). If these eight cases are excluded, because we do not know if a second-trimester scan would have detected malformations, the overall detection rate when performing first-trimester risk assessment and second-trimester anomaly scans would have been 97.9% (95% CI, 95.1–100%) (94 out of 96).

DISCUSSION

The introduction of a new screening strategy for T21 in Denmark has resulted in a significant increase in the number of T18 and T13 fetuses diagnosed before week 18 and a significant decrease in the number of infants born with T18 or T13. Importantly, the introduction of the new screening strategy has also resulted in a marked decrease in the number of diagnostic invasive tests. From 2000 to 2006, the yearly number of invasive diagnostic procedures in Denmark thus decreased by more than 50%.

Several authors have reported on the performance of first-trimester combined screening for T18 and T13. In 2002, Spencer and Nicolaides derived a combined risk algorithm for T18/T13 with a predicted detection rate of 95% using the risk cut-off of 1 : 150. We found a first-trimester detection rate for T18 and T13 of 78.8% using the same algorithm and cut-off. Overall, it seems that detection rates observed in series prospectively collected are not as high as those expected based on modeled datasets. In a large, prospectively collected Danish cohort, Kirkegaard et al. reported a 73% detection rate of T18 or T13 (cut-off 1 : 150 for T18/T13 and cut-off 1 : 300 for T21). The differences found in detection rates for T18 and T13 in available reports may be explained by the use of different risk algorithms, different cut-off values and different study designs. Overall, however, the available studies show that it is possible to detect the vast majority of fetuses with T18 or T13 when screening for T21 using the first-trimester combined screening strategy.
These rates are not as high as previously reported established gestational-age-specific loss rates for T18 and second-trimester scan is performed. Recently, Morris screening.

with T18 or T13, the parents can opt for a safer early in pregnancy20 and should the fetus be diagnosed in utero the first trimester is not necessary because the majority of T18 (2.5 per 10,000) and T13 (1.6 per 10,000) in

Figure 3 Total number of cases with trisomy 18 (T18) or trisomy 13 (T13) in 2006 and 2007. Values shown in parentheses represent: number of T18 cases/number of T13 cases. *Screen positive defined as T21 risk > 1 : 300 and T18/T13 risk > 1 : 150 at first-trimester screening.

One could argue that screening for T18 and T13 in the first trimester is not necessary because the majority of fetuses will either die in utero or be detected if a second-trimester scan is performed. Recently, Morris et al. established gestational-age-specific loss rates for T18 and T13. These rates are not as high as previously reported by Snijders et al.14. Approximately 72% of fetuses with T18 and 49% with T13 will be lost from week 12 to term. Detection rates for T18 and T13 in the second trimester, determined using ultrasound scans, have been reported to be 80–86% for T18 and 90–100% for T13. However, no algorithm for the second-trimester ultrasound screening is available and the screen-positive rate is not known. As the overall screen-positive rate only increases slightly (by 0.1%11) when including the screening algorithm for T18 and T13 in the first-trimester screening program for T21, it is considered acceptable to include screening for T18 and T13 in the screening program. Most women prefer screening to be performed early in pregnancy20 and should the fetus be diagnosed with T18 or T13, the parents can opt for a safer termination of the pregnancy in the first trimester21.

In the present study, the estimated incidences at delivery of T18 (2.5 per 10,000) and T13 (1.6 per 10,000) in Denmark between 1997 and 2007, taking the fetal loss rate into account, were very similar to those reported by other authors, of 1.25–2.8 per 10,000 for T18 and 0.5–2.0 per 10,000 for T1322. The differences in the rates are probably because of the small study size and diversity in rate calculation; some include and others exclude prenatally diagnosed fetuses and pregnancy terminations, and different fetal loss rates are used (if taken into account at all), when calculating the rates.

As expected, we found that the median age of mothers with a T18 or T13 fetus/infant was higher than the median age of mothers who did not carry a fetus with T18 or T13. We found the median survival time to be 5 days and 4.5 days, respectively, for T18 and T13. This confirms results from previous studies reporting median survival times of 3–14.5 days and 2.5–8.5 days, respectively22.

The main strength of our study was that it comprised a large national dataset collected in a homogeneous low-risk population. Local quality assurance of the ultrasound scans was performed via The Fetal Medicine Foundation (www.fetalmedicine.com), and the biochemistry departments were accredited by EN15189. Our national cytogenetic register compiles results from all chromosome analyses and is considered to be almost 100% complete. There could be potential bias when comparing data collected in one register over a 10-year period; however, no major changes of reporting into the register occurred during this time period. Our prenatal screening information on cases with T18 or T13 in 2006 and 2007 was considered complete because we were able to find detailed screening information on all cases registered in the national cytogenetic register.

A limitation of our study was that although the data were prospectively registered, our main objective was to look retrospectively at the gestational age at which T18 and T13 were diagnosed throughout the 11-year period. Therefore, we did not have information on the overall first-trimester screen-positive rate for T18/T13. However, we do not expect it to vary from the very low false-positive rates (<0.5%) expected and reported in other study populations11,15. In Denmark the screen-positive rate for T21 using the cut-off of 1 : 300 is low (3.5% in 2006)10. Therefore, a small increase in the screen-positive rate, when including screening for T18 and T13 in the program, is fully acceptable.

To the best of our knowledge this is the first report, using national data, to describe how first-trimester screening for T21 in routine clinical practice has changed the gestational age at detection of T18 and T13. In Denmark, more than 90% of pregnant women participate in the screening program13 and, as expected, we found that the number of fetuses diagnosed late in pregnancy or infants born with either T18 or T13 decreased significantly from 1997 to 2007. We consider quality control of a screening program as very important. It is essential in order to update pregnant women, sonographers and doctors on the screening performance and is required to specify where improvement is needed.
ACKNOWLEDGMENT
The Danish Cytogenetic Central Register is sincerely thanked for generating, storing and making the data available for research purposes.

COLLABORATORS IN THE DANISH FETAL MEDICINE RESEARCH GROUP:
K. Brøndum-Nielsen, Kennedy Institute; L. Nyelandsted Krogh, Odense University Hospital; C. Fagerberg, Vejle Hospital; V. Ersbak, Silkeborg Hospital; I. Stormes, Randers Hospital; J. Christensen, Herning Hospital; S. Sommer, Horsens Hospital; A. Holmsovk, Viborg Hospital; H. Mogensen, Soenderborg Hospital; H. Zingenber, Glostrup Hospital; H. Mogensen, Hvidovre Hospital; H. Poulsen, Esbjerg Hospital; P. Skovbo, Aalborg Hospital; A. Nikkiola, Gentofte Hospital; T. Larsen, Holbaek Hospital; C. Henriques, Odense University Hospital; S. Vemmelund Juul, Kolding Hospital; A. C. Shalmi, Holbaek Hospital; C. Henriques, Hvidovre Hospital; H. Poulsen, Esbjerg Hospital; P. Skovbo, Aalborg Hospital; A. Nikkiola, Gentofte Hospital; T. Larsen, Holbaek Hospital; C. Henriques, Odense University Hospital; S. Vemmelund Juul, Kolding Hospital; A. C. Shalmi, Hilleröd Hospital; L. Sperling, Herlev Hospital; A. Boel Hesselund, Naestved Hospital; N. Dragsted, Svendborg Hospital

REFERENCES
A prospective study evaluating the performance of first trimester combined screening for trisomy 21 using repeated sampling of the maternal serum markers PAPP-A and free β-hCG

Charlotte Ekelund¹, Dave Wright², Susan Ball², Ida Kirkegaard³, Pernille Nørgaard⁴, Steen Sørensen⁵, Lennart Friis-Hansen⁶, Finn Stener Jørgensen⁴, Niels Tørring⁷, Bodil Hammer Bech⁸, Olav Bjørn Petersen³, Ann Tabor¹

1. Fetal Medicine Unit, Department of Obstetrics, Rigshospitalet, Copenhagen University Hospital, Denmark
2. School of Computing and Mathematics, University of Plymouth, UK
3. Department of Obstetrics and Gynecology, Aarhus University Hospital, Denmark
4. Fetal Medicine Unit, Department of Obstetrics and Gynecology, Hvidovre, Copenhagen University Hospital, Denmark
5. Department of Clinical Biochemistry, Hvidovre, Copenhagen University Hospital, Denmark
6. Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Denmark
7. Department of Clinical Biochemistry, Aarhus University Hospital, Denmark
8. Department of Public Health, Section of Epidemiology, Aarhus University, Denmark

Short title: Screening for trisomy 21 using a double set of maternal serum markers.

Keywords: combined first trimester screening, maternal serum markers, free beta-hCG, PAPP-A, nuchal translucency, screening for trisomy 21
Abstract

Objective: To prospectively evaluate the screening performance of first trimester combined screening for trisomy 21 using a double set of the biochemical markers PAPP-A and free β-hCG

Methods: Three fetal medicine departments in Denmark participated in the study. Screening for trisomy 21 was set up as a two-step approach with blood sampling performed before the nuchal translucency scan (early sample). A second blood sample was collected at the time of the nuchal translucency scan (late sample). PAPP-A and free β-hCG were measured on both the early and the late samples. Age standardised detection and false positive rates for different screening protocols were produced.

Results: We collected two blood samples in 27 pregnancies affected by trisomy 21 and in 3891 control pregnancies. The early samples were taken between gestational week 8+0 up to week 13+6, and the late samples between week 11+3 up to week 14+6. The median interval between the samples was 17 days (range 1-40 days). We found a significantly better (P<0.05) estimated screening performance when using early sampling vs. late sampling. With a risk cut-off of 1 in 100, at the time of the risk assessment, the estimated detection and false positive rates were 91% (95% CI: 81-98%) and 1.6 % (95% CI: 1.3-2.0%) respectively. Better estimated performance was achieved with the use of the double set of markers; detection rate 93% (95%CI: 85-99%) and false positive rate 1.7% (95% CI 1.4-2.0%), but this was not significantly different from the early sample protocol (P>0.5).

Conclusion: Using early sampling with measurement of PAPP-A and free β-hCG in the combined first trimester screening can optimise screening performance for trisomy 21. Using a double set of the maternal serum markers has the potential to further improve screening performance.
Introduction

Screening for trisomy 21 using the first trimester combined screening strategy is now offered to pregnant women in many countries. The screening test combines the maternal age related risk for trisomy 21 with the nuchal translucency thickness measured by ultrasound in pregnancy week 11 to 14 and analysis of two maternal serum markers, Pregnancy Associated Plasma Protein-A (PAPP-A) and free beta human Chorionic Gonadotrophin (free β-hCG), in week 8 to 14. Prospective studies have demonstrated that the first trimester combined screening test has a detection rate about 90% for a 5% false positive rate\(^1-3\).

It is well established that there is a temporal variation of the biochemical markers across the first and second trimester in cases with trisomy 21\(^4-7\). The mean log multiple of the median (MoM) free β-hCG increases linearly with gestation between 8 and 13 weeks in trisomy 21 pregnancies, and thus the discrimination between affected and unaffected pregnancies is more pronounced late in the first trimester. This is in contrast to PAPP-A where the maximum discrimination between trisomy 21 and unaffected pregnancies occurs at 9-10 weeks as described by Wright et al.\(^5\). The screening performance of the first trimester combined screening for trisomy 21 is therefore dependent on gestational age at blood sampling. Many centres have established one-stop clinics for assessment of risk (OSCAR)\(^8\), where blood sampling, ultrasound assessment and counselling are done on the same day, usually around pregnancy week 12-13. It has been suggested that because of the greater discrimination power of PAPP-A, blood sampling at 9-11 weeks would provide a better overall screening performance \(^4-6\). Two studies have prospectively evaluated this concept and have found that screening performance is better when the blood sample is taken early in the first trimester \(^9,10\). An alternative approach to further improve performance would be to measure PAPP-A early at 9 weeks and free β-hCG late at 12 weeks or to measure both markers at 9 and 12 weeks of gestation.

The objective of this study was to evaluate prospectively, how screening performance is affected by time of sampling within the same pregnancy and to evaluate if a double set of the maternal serum markers PAPP-A and free β-hCG can improve the screening performance of first trimester combined screening for trisomy 21.
Material and methods

The study was performed at three centres of Fetal Medicine in Denmark (Rigshospitalet, Hvidovre and Skejby Hospital) between 01 June 2008 and 31 September 2010. At all three centres the screening was set up as a two-step approach where blood sampling and the nuchal translucency scan were performed on separate occasions.

During the study period the first blood sample (referred to as the *early sample*) was taken at the hospitals or by the general practitioners. When the women came for the nuchal translucency scan, they were asked for permission to provide a second blood sample (referred to as the *late sample*) for measurement of PAPP-A and free β-hCG. We aimed at collecting the samples at the same time as the nuchal scan. In some cases this was not possible due to logistic problems and then the women were asked to return for the additional blood sampling before week 14. The results of the late sample were neither disclosed to the participants, nor to the sonographers.

We included only singleton pregnancies in the study population and excluded pregnancies with chromosomal abnormalities other than trisomy 21 including trisomy 21 mosaicism, twin and higher order pregnancies, and those in which the second blood sample for some reason was taken later than 14+6 weeks.

Ultrasound scanning was performed in the three hospitals by sonographers all certified by the Fetal Medicine Foundation (FMF) in London, UK. The crown-rump length (CRL) was measured to determine gestational age, and nuchal translucency thickness was measured according to the FMF guidelines, from 11+2 to 13+6 weeks of gestation (CRL 45–84 mm). All data were registered in the local Astraia databases (Astraia Gmbh) for each participating centre. All risk assessments in the three centres were based on maternal age, first (early) blood sample values of PAPP-A and free β-hCG and nuchal translucency thickness. No other ultrasound markers were included in the risk assessment. Women were offered an invasive diagnostic test, when the combined risk was 1:300 or higher at the time of testing.

In two centres (Rigshospitalet and Hvidovre Hospital) the second (late) blood samples were immediately analysed together with routine serum samples, using the Brahms Kryptor. At the third centre (Skejby) the samples were collected as part of a pregnancy biobank. Samples were frozen to -80°C within 2 hours of collection, thawed and analysed using the Brahms Kryptor when study inclusion had stopped.
Information about the pregnancy including gestational age determined by CRL at the nuchal translucency scan, maternal weight, ethnicity, smoking, method of conception, concentration of the serum markers and date of sampling for the early blood test was obtained from the local Astraia databases. This information was taken into account when converting exact values of the two set of serum markers into MoM values. Results of prenatal and postnatal karyotypes were obtained from the Departments of Clinical Genetics at Rigshospitalet (covering Rigshospitalet and Hvidovre Hospital) and Skejby Hospital, and cross-checked with the Danish Central Cytogenetic Register (DCCR).

The study was approved by the Ethical Committee of the Capital Region of Denmark (H-A-2008-37) and the Data Protection Agency in Denmark (2008-41-2928).

Statistics
We defined four first trimester screening protocols. All protocols used maternal age, nuchal translucency and biochemical markers in different combinations as shown in table 1.

Autocorrelation and cross correlation functions based on the current data set for the two markers were used to define the multivariate Gaussian distributions for combinations of log MoM PAPP-A and log MoM free β hCG from the two samples. Each patient specific risk for trisomy 21 was obtained combining the maternal age related risk and the likelihood ratio using Bayes theorem. The likelihood ratios were obtained from the mixture model for NT and fitted Gaussian likelihood ratios for maternal serum free β-hCG and PAPP-A log MoM values from the early and late samples as appropriate. Estimates of screening performance were obtained by first computing likelihood ratios for unaffected and trisomy 21 pregnancies for each pregnancy in the sample. For the unaffected pregnancies, these likelihood ratios were used to obtain a maternal age specific false positive rate for each maternal age from 14 to 50. A weighted average of these maternal age specific false positive rates, with respect to the reference distribution of maternal ages in unaffected pregnancies was then calculated producing an estimate of the false positive rate in the reference population. Similarly, the likelihood ratios for the trisomy 21 pregnancies were used to compute estimates of maternal age specific detection rates. A weighted average of these, with respect to the reference maternal age distribution of trisomy 21 pregnancies in the reference population was then calculated producing an estimate of the detection rate in the reference
population. Confidence intervals for the detection and false positive rates were obtained using bootstrapping. The reported screening performance is based on risk at the time of screening and standardised to maternal age distribution of England and Wales 2002¹¹.
Results

We collected two blood samples in 4,716 pregnancies. After exclusion of pregnancies with chromosomal abnormalities other than trisomy 21 (including trisomy 21 mosaicism), twin and higher order pregnancies, and those in which the second blood sample was taken later than 14+6 weeks, the study population consisted of 27 pregnancies affected by trisomy 21 and 3891 control pregnancies defined as having either a normal prenatal chromosome analysis or no abnormal karyotype registered postnatally. Details of maternal characteristics in the total study population are shown in Table 2 according to the three centres. The early blood samples were taken between 8 weeks +0 days and 13 weeks + 6 days, 72% were taken before 11 weeks + 2 days. The median interval between the two samples was 17 days (range 1-40 days).

Screening performance:

Table 3 gives an overview of detection rates according to fixed false positive rates for the four different screening protocols. We achieved the best screening performance when using markers from two samples with a detection rate as high as 97% for a fixed false positive rate of 3% (protocol 3 and 4). Using both markers from only the early sample provided a detection rate of 95% (protocol 2), compared to a detection rate of 92% when using only the late sample (protocol 1).

We calculated screening performance according to the four screening protocols for different fixed cut-offs (table 4). We found a significant benefit in terms of reduced FPR for early vs. late sampling (protocol 2 vs. protocol 1) using a risk cut of 1 in 100 at the time of screening. The estimated reduction in FPR was 0.52% (95% CI: 0.23% to 0.80%). There was also a trend towards improvement in detection rate which did not reach significance at the 5% level. The estimated increase in detection rate was 2.9% (95% CI: -1.3% to 7.1%).

The best strategy, in terms of estimated performance was the test with all four markers (protocol 4). Compared to early sampling of both markers (protocol 2), using a risk cut-off of 1 in 100 at the time of screening, detection increased by an estimated 1.6% (95% CI: -1.3% to 4.6%), although the evidence of improvement did not achieve significance at the 5% level.
Discussion:
This is the first large prospective study performed to investigate the potential benefits of having access to a double set of maternal serum markers within the first trimester of a pregnancy. This study confirms that screening performance is affected by time of blood sampling. We found that screening performance is improved when risk calculation is based on an early first trimester sample compared to the performance found when the sample is taken at the time of the nuchal translucency scan. This finding was expected due to previous published data on the biochemical markers’ gestational age dependent discriminatory power and in line with two previous studies, which evaluated early blood sampling in the first trimester. Kirkegaard et al found in a register-based study a significantly higher detection rate when the sample was taken before gestational week 10 compared to at or after gestational week 10 (DR 100% vs. 77%).

Borrell et al. found a remarkably reduced false positive rate in their prospective evaluation of the first trimester combined screening programme where mean gestational age at blood sampling was 9.4 weeks. There is now accumulating evidence that performance of the first trimester combined test is improved when the blood sampling is done prior to the nuchal translucency measurement. Since the publication of these two studies extensive work has been made to improve the statistically complicated algorithms used for patient specific risk calculation. Screening performance has been improved by development of optimised algorithms and therefore a substantial improvement will be difficult to obtain in any new screening approaches. Moving towards earlier biochemical sampling is however a relatively simple way to optimise the screening system. In England the national screening committee has set a goal of a 90% detection rate for a 2% false positive rate. In our data this is possible to achieve by using a cut off of 1 in 100 with early blood sampling (DR 91%, FPR 1.6%).

Other countries or centres may prefer to improve the detection rate without changing the false positive rate. By having access to two samples (protocol 3 or 4) we found that it is possible to keep the false positive rate below 4% and increase the detection rate up to 97%. Repeated testing between the first and second trimester has been investigated by several authors. As screening for trisomy 21 has moved toward first trimester combined screening over the last 5 years, it is relevant to investigate repeated testing within the first trimester. To the best of our knowledge only one paper has previously investigated if repeat maternal serum screening within
the first trimester can improve screening performance. Spencer and Cuckle used a data set with 261 paired samples taken between weeks 10+0 to 13+6 from unaffected pregnancies. They established correlation matrixes, investigated biological variability and subsequently modelled the data to describe detection rates in a protocol which included NT measurement and maternal serum markers measured at 10 weeks and 12 weeks. They found a detection rate of 88.6% for a fixed false positive rate of 5%, which was only a 1.3% increase in detection rate compared to using only one sample. We found when using our large data set including also 27 cases of trisomy 21, screening performance to be very high (detection rates 97% for a false positive rate of 3%) when using two samples (protocol 3 or 4). In contrast to Spencer and Cuckle our calculations are based on the mixture model (wright et al. 2008) and the maternal serum biochemistry is adjusted for maternal characteristics as described by Kagan et al. 2008 which should provide optimised screening performance in itself.

The strength of our study is that it is a large study with prospectively collected data including trisomy 21 cases, and the presented results are not based on modelled data. The data set was collected at three different centres with slightly different ways of handling the samples. Thus the data do not represent a strict study set up, and therefore we believe that our study results reflect what is probably achievable in routine clinical settings. It is possible that an even better screening performance could be achieved if the set up had been stricter with all early samples taken between gestational week 9 and 10. In the available data set about one third of the samples were taken after week 10. Again the study probably does not overestimate the screening performance and the reported results should be achievable in other centres.

Although the data set does contain cases with trisomy 21, the number is still limited. It is possible that the correlation matrixes and the risk calculations can be improved by having access to more data. Thus before repeated testing is offered to pregnant women outside a study set up we do suggest validation of the results in independent data sets. In addition it has to be considered if repeated testing is cost effective by lowering the number of invasive procedures. Many alternative ways of improving the screening performance have been suggested. Assessment of additional first trimester ultrasound markers like the nasal bone, ductus venosus flow and flow across the tricuspid valves have also been found to benefit screening performance. Evaluation of these markers however requires training of sonographers and a substantial number of scans are needed.
to properly determine the presence or absence of the markers21,22. In addition the examination time required for the nuchal translucency scan is increased. The advantages of repeated blood sampling are that no training of staff is required and that it is built on an already established laboratory analysis. It is important to work on improvement of the screening programme from many directions. One centre may find it logistically simple to implement an extra blood sample in the risk calculation, other centres may not be able to establish the offer of early blood sampling, but prefer to train the sonographers to use assessment of additional ultrasound markers in the risk calculation.

In conclusion we have described how the performance of the first trimester combined screening programme is affected by the time of blood sampling. Having access to an early blood sample is superior to sampling at the same time as the nuchal translucency scan. In addition it seems possible to improve the screening performance even more, if repeated blood sampling within the first trimester is performed. Optimisation of screening performance in a screening programme like first trimester combined screening for trisomy 21 which is used world wide is always relevant as even small improvements may lead to a substantial decrease in number of invasive tests performed and subsequently in number of pregnancies affected by procedure related loss.
Acknowledgement:

We sincerely thank Dr. Susanne Kjaergaard, Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital and Dr. Ida Vogel, Department of Clinical Genetics, Skejby, Aarhus University Hospital for providing cytogenetic follow up on all participants. In addition we thank Jan Hansen, Danish Central Cytogenetic Register for cross checking the data with national cytogenetic information. We thank the Aarhus Birth Cohort Biobank of Skejby for assisting us in collection of samples. The Aarhus Birth Cohort Biobank is a result from a major grant from the Danish National Research Foundation. Additional support for the Biobank is obtained from Tryg Fonden and The Aarhus University Research Foundation. We thank all the secretaries in the fetal medicine units for help in recruitment, and the lab personnel for collecting and analysing blood samples. In addition we would like to thank Brahms Gmbh for providing analysis kits for the study.

Funding was in addition received from the University of Copenhagen (part of a PhD scholarship for Charlotte K Ekelund), Svend Andersen’s Foundation, the Foundation of Aase and Ejnar Danielsen, Augustinus Foundation and A.P. Moller og Chastine Mc-Kinney Moller’s Foundation.
Table 1: Investigated screening protocols

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Test Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol 1</td>
<td>MA + NT + PAPP-A (late sample) + free β-hCG (late sample)</td>
</tr>
<tr>
<td>Protocol 2</td>
<td>MA + NT + PAPP-A (early sample) + free β-hCG (early sample)</td>
</tr>
<tr>
<td>Protocol 3</td>
<td>MA + NT + PAPP-A (early sample) + free β-hCG (late sample)</td>
</tr>
<tr>
<td>Protocol 4</td>
<td>MA + NT + PAPP-A (early and late sample) + free β-hCG (early and late sample)</td>
</tr>
</tbody>
</table>

MA: Maternal age, NT: Nuchal translucency
Table 2: Background information study population in total and by centre

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Total (n = 3918)</th>
<th>Rigshospitalet (n = 1752)</th>
<th>Hvidovre (n = 990)</th>
<th>Skejby (n = 1176)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maternal age (years) (median, IQR)</td>
<td>31 (28-34)</td>
<td>31 (29-35)</td>
<td>31 (28-33)</td>
<td>30 (27-33)</td>
</tr>
<tr>
<td>Maternal weight (kg) (median, IQR)</td>
<td>65 (59-72)</td>
<td>64 (59-70)</td>
<td>65 (59-73)</td>
<td>66 (60-74)</td>
</tr>
<tr>
<td>Mode of conception</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spontaneous</td>
<td>3546 (90.5 %)</td>
<td>1569 (89.6 %)</td>
<td>889 (89.8 %)</td>
<td>1088 (92.5 %)</td>
</tr>
<tr>
<td>IVF</td>
<td>120 (3.1 %)</td>
<td>67 (3.8 %)</td>
<td>24 (2.4 %)</td>
<td>29 (2.5 %)</td>
</tr>
<tr>
<td>ICSI</td>
<td>69 (1.8 %)</td>
<td>34 (1.9 %)</td>
<td>18 (1.8 %)</td>
<td>17 (1.7 %)</td>
</tr>
<tr>
<td>Ovulation-induction drugs</td>
<td>168 (4.3 %)</td>
<td>76 (4.3 %)</td>
<td>50 (5.1 %)</td>
<td>42 (3.6 %)</td>
</tr>
<tr>
<td>Not reported</td>
<td>15 (0.4 %)</td>
<td>6 (0.3 %)</td>
<td>9 (0.9 %)</td>
<td>0</td>
</tr>
<tr>
<td>Smoking status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-smokers</td>
<td>3676 (93.8 %)</td>
<td>1658 (94.6 %)</td>
<td>882 (89.1 %)</td>
<td>1136 (96.6 %)</td>
</tr>
<tr>
<td>Smokers</td>
<td>147 (3.8 %)</td>
<td>60 (3.4 %)</td>
<td>52 (5.3 %)</td>
<td>35 (3.0 %)</td>
</tr>
<tr>
<td>Stopped smoking</td>
<td>82 (2.1 %)</td>
<td>32 (1.8 %)</td>
<td>46 (4.6 %)</td>
<td>4 (0.3 %)</td>
</tr>
<tr>
<td>Not reported</td>
<td>13 (0.3 %)</td>
<td>2 (0.1 %)</td>
<td>10 (1.0 %)</td>
<td>1 (0.1 %)</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caucasian</td>
<td>3803 (97.1 %)</td>
<td>1714 (97.8 %)</td>
<td>948 (95.8 %)</td>
<td>1141 (97.0 %)</td>
</tr>
<tr>
<td>Afro-caribbean</td>
<td>9 (0.2 %)</td>
<td>4 (0.2 %)</td>
<td>2 (0.2 %)</td>
<td>3 (0.3 %)</td>
</tr>
<tr>
<td>Asian</td>
<td>34 (0.9 %)</td>
<td>10 (0.6 %)</td>
<td>8 (0.8 %)</td>
<td>16 (1.4 %)</td>
</tr>
<tr>
<td>Oriental</td>
<td>37 (0.9 %)</td>
<td>12 (0.7 %)</td>
<td>15 (1.5 %)</td>
<td>10 (0.9 %)</td>
</tr>
<tr>
<td>Mixed/other</td>
<td>18 (0.5 %)</td>
<td>7 (0.4 %)</td>
<td>5 (0.5 %)</td>
<td>6 (0.5 %)</td>
</tr>
<tr>
<td>Not reported</td>
<td>17 (0.4 %)</td>
<td>5 (0.3 %)</td>
<td>12 (1.2 %)</td>
<td>0</td>
</tr>
<tr>
<td>Gestational age at first sample (weeks)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8+0 - 8+6</td>
<td>500 (12.8 %)</td>
<td>121 (6.9 %)</td>
<td>16 (1.6 %)</td>
<td>363 (3.9 %)</td>
</tr>
<tr>
<td>9+0 - 9+6</td>
<td>1027 (26.2 %)</td>
<td>403 (23.0 %)</td>
<td>108 (10.9 %)</td>
<td>516 (43.9 %)</td>
</tr>
<tr>
<td>10+0 - 10+6</td>
<td>1143 (29.2 %)</td>
<td>533 (30.4 %)</td>
<td>375 (37.9 %)</td>
<td>235 (20.0 %)</td>
</tr>
<tr>
<td>11+0 - 11+6</td>
<td>927 (23.7 %)</td>
<td>486 (27.7 %)</td>
<td>384 (38.8 %)</td>
<td>57 (4.8 %)</td>
</tr>
<tr>
<td>12+0 - 12+6</td>
<td>296 (7.6 %)</td>
<td>190 (10.8 %)</td>
<td>105 (10.6 %)</td>
<td>4 (0.3 %)</td>
</tr>
<tr>
<td>13+0 - 13+6</td>
<td>22 (0.6 %)</td>
<td>19 (1.1 %)</td>
<td>2 (0.2 %)</td>
<td>1 (0.1 %)</td>
</tr>
<tr>
<td>14+0 - 14+6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Not reported</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gestational age at second sample (weeks)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8+0 - 8+6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9+0 - 9+6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10+0 - 10+6</td>
<td>4 (0.1 %)</td>
<td>4 (0.2 %)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11+0 - 11+6</td>
<td>307 (7.8 %)</td>
<td>148 (8.4 %)</td>
<td>80 (8.1 %)</td>
<td>79 (6.7 %)</td>
</tr>
<tr>
<td>12+0 - 12+6</td>
<td>1728 (44.1 %)</td>
<td>749 (42.8 %)</td>
<td>399 (40.3 %)</td>
<td>580 (49.3 %)</td>
</tr>
<tr>
<td>13+0 - 13+6</td>
<td>1760 (44.9 %)</td>
<td>767 (43.8 %)</td>
<td>480 (48.5 %)</td>
<td>514 (43.7 %)</td>
</tr>
<tr>
<td>14+0 - 14+6</td>
<td>118 (3.0 %)</td>
<td>84 (4.8 %)</td>
<td>31 (3.1 %)</td>
<td>3 (0.3 %)</td>
</tr>
<tr>
<td>Number of days between samples</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median and IQR</td>
<td>17 (12-23)</td>
<td>15 (10-21)</td>
<td>14 (10-17)</td>
<td>24 (21-28)</td>
</tr>
</tbody>
</table>
Table 3: Detection rate (95 % CI) according to screening protocol at different fixed false positive rates

<table>
<thead>
<tr>
<th>False positive rate</th>
<th>0.5%</th>
<th>1%</th>
<th>2%</th>
<th>3%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAPP-A (late sample) + free β-hCG (late sample)</td>
<td>76% (61% - 88%)</td>
<td>83% (68% - 93%)</td>
<td>88% (76% - 96%)</td>
<td>92% (82% - 98%)</td>
</tr>
<tr>
<td>Protocol 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAPP-A (early sample) + free β-hCG (early sample)</td>
<td>82% (67% - 92%)</td>
<td>88% (75% - 96%)</td>
<td>92% (83% - 98%)</td>
<td>95% (87% - 99%)</td>
</tr>
<tr>
<td>Protocol 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAPP-A (early sample) + free β-hCG (late sample)</td>
<td>85% (71% - 94%)</td>
<td>90% (78% - 97%)</td>
<td>94% (84% - 99%)</td>
<td>97% (90% - 99%)</td>
</tr>
<tr>
<td>Protocol 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAPP-A (early and late sample) + free β-hCG (early and late sample)</td>
<td>88% (74% - 96%)</td>
<td>91% (79% - 98%)</td>
<td>94% (85% - 99%)</td>
<td>97% (90% - 99%)</td>
</tr>
</tbody>
</table>
Table 4: Screening performance (detection rates (DR) and false positive rates (FPR)) for different fixed cut offs

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Test Combination</th>
<th>1 in 50 DR (%)</th>
<th>1 in 100 DR (%)</th>
<th>1 in 200 DR (%)</th>
<th>1 in 300 DR (%)</th>
<th>1 in 50 FPR (%)</th>
<th>1 in 100 FPR (%)</th>
<th>1 in 200 FPR (%)</th>
<th>1 in 300 FPR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PAPP-A (late sample) + free β-hCG (late sample)</td>
<td>83 (70 - 93)</td>
<td>88 (77 - 96)</td>
<td>93 (83 - 99)</td>
<td>94 (86 - 99)</td>
<td>1.2 (0.9 - 1.4)</td>
<td>2.1 (1.8 - 2.5)</td>
<td>3.9 (3.5 - 4.4)</td>
<td>5.4 (4.9 - 6.0)</td>
</tr>
<tr>
<td>Protocol 2</td>
<td>PAPP-A (early sample) + free β-hCG (early sample)</td>
<td>87 (75 - 96)</td>
<td>91 (81 - 98)</td>
<td>94 (86 - 99)</td>
<td>96 (89 - 99)</td>
<td>0.9 (0.7 - 1.2)</td>
<td>1.6 (1.3 - 2.0)</td>
<td>2.8 (2.4 - 3.2)</td>
<td>4.0 (3.5 - 4.4)</td>
</tr>
<tr>
<td>Protocol 3</td>
<td>PAPP-A (early sample) + free β-hCG (late sample)</td>
<td>90 (79 - 97)</td>
<td>93 (84 - 99)</td>
<td>97 (90 - 99)</td>
<td>97 (91 - 99)</td>
<td>1.1 (0.8 - 1.3)</td>
<td>1.9 (1.5 - 2.1)</td>
<td>3.1 (2.7 - 3.5)</td>
<td>4.2 (3.7 - 4.7)</td>
</tr>
<tr>
<td>Protocol 4</td>
<td>PAPP-A (early and late sample) + free β-hCG (early and late sample)</td>
<td>91 (80 - 98)</td>
<td>93 (85 - 99)</td>
<td>96 (89 - 99)</td>
<td>97 (91 - 99)</td>
<td>1.0 (0.8 - 1.2)</td>
<td>1.7 (1.4 - 2.0)</td>
<td>2.9 (2.5 - 3.3)</td>
<td>4.0 (3.5 - 4.5)</td>
</tr>
</tbody>
</table>
Reference List

Title: Screening performance for trisomy 21 comparing first trimester combined screening and a first trimester contingent screening protocol including ductus venosus and tricuspid flow.

Authors:
Ekelund CK¹, Petersen OB², Sundberg K¹, Pedersen FH², Vogel I³, Tabor A¹,⁴
¹Department of Fetal Medicine, Rigshospitalet, Copenhagen University Hospital, Denmark
²Fetal Medicine Unit, Department of Obstetrics, Aarhus University Hospital, Denmark
³Department of Clinical Genetics, Aarhus University Hospital, Denmark
⁴Faculty of Health Sciences, University of Copenhagen, Denmark

Corresponding author:
Charlotte Kvist Ekelund
Department of Fetal Medicine 4002
Rigshospitalet
Blegdamsvej 9, 2100 Copenhagen
Denmark
charlotte.ekelund@rh.regionh.dk or charlotte.ekelund@gmail.com
Phone: +45 3545 3722
Mobile: +45 2826 5042

Short title: First trimester ductus venosus and tricuspid flow in screening for trisomy 21
Funding: Funding was received from the University of Copenhagen (part of a PhD scholarship for Charlotte K Ekelund), Svend Andersen’s Foundation, Augustinus Foundation and from “The Foundation of Aase and Ejnar Danielsen”.

None of the authors report any conflict of interest

What is already known about this topic: Ductus venosus flow and tricuspid flow may be used in contingent screening protocols to increase screening performance for trisomy 21. There are few prospective studies evaluating the potential in clinical practice.

What does this study add: This is a two centre prospective study which confirms previous results on how first trimester screening performance is improved when using additional ultrasound markers. The study was partly done as part of a routine clinical set up.

Key words: screening, trisomy 21, risk assessment, ductus venosus flow, tricuspid flow, high or intermediate risk
Abstract:

Aim: To compare the standard first trimester combined risk assessment for trisomy 21 with a contingent screening protocol including tricuspid flow and ductus venosus flow.

Material and method: Women with singleton pregnancies and a first trimester combined risk assessment > 1:1000 were included. They all had additional assessment of the ductus venosus and the tricuspid flow. We compared screening performance in two screening strategies; a) *First trimester combined screening strategy* based on the individual risk results from the routine screening test. b) *Contingent screening strategy* based on a combination of the routine test results and additional ultrasound markers.

Results: We included 917 women in the study, 894 in the euploid group and 23 in the trisomy 21 group. Using a contingent screening strategy resulted in a significant decrease in screen positive rate from 48.3% to 17.7% (p< 0.001) in the studied population. There was no statistical difference in detection rate between the two screening strategies.

Conclusion: There is increasing evidence in favour of using additional ultrasound markers as part of contingent screening protocols in the first trimester. We do suggest performing further studies in routine clinical settings to provide validation of the available risk algorithms.
Introduction:

Screening for trisomy 21 in the first trimester by maternal age, nuchal translucency thickness and the biochemical markers PAPP-A and free β-hCG is now a well established offer to all pregnant women in Denmark. This first trimester combined screening strategy is associated with a detection rate about 90% for a false positive rate of 5%. Several authors have studied ductus venosus flow and tricuspid flow as additional ultrasound markers for trisomy 21. Fetuses with trisomy 21 more often have abnormal ductus venosus blood flow and/or abnormal tricuspid flow (tricuspid regurgitation) compared to euploid fetuses. The performance of the screening programme can be increased by including these markers in the risk assessment. As assessment of the ductus venosus blood flow and tricuspid flow is time consuming and requires appropriately trained sonographers it has been suggested to reserve these examinations for a sub-group of pregnancies with an intermediate risk (between 1:50-1:1000) after combined fetal nuchal translucency measurement and biochemical screening. If this contingent protocol is used, a detection rate > 95% for a false positive rate of less than 3% is achievable according to previously published reports.

The aim of our study was to assess the ductus venosus blood flow and the tricuspid flow in a high and intermediate risk population (risk > 1:1000) and evaluate the markers’ possible impact on screening performance for trisomy 21, by comparing detection and screen positive rates in our study population achieved by either the routine first trimester combined screening strategy (not including the tricuspid and ductus venosus flows) or by a contingent screening strategy, where information on tricuspid and ductus venosus flow was included in the assessment.
Material and method:

This was a prospective study performed in two large Fetal Medicine Centres in Denmark; Copenhagen University Hospital, Rigshospitalet and Aarhus University Hospital, Skejby. Both centres serve a large low risk pregnant population and perform around 5-6000 nuchal scans per year. The pregnant women are offered the first trimester combined screening test based on maternal age, nuchal translucency measurement and maternal biochemistry (PAPP-A and free β-hCG), and both centres use the software system Astraia, version 1.21 (www.astraia.com) to calculate individual risks. The cut off used for referral to invasive testing is 1:300 at time of screening.

At Copenhagen University Hospital, Rigshospitalet the study was conducted between 1 September 2009 and 30 September 2010. A first trimester combined risk assessment is routinely offered. The blood test is usually taken between gestational week 9 and 11 and the nuchal scan is accordingly performed between week 11+2 and 14+0 by FMF certified sonographers. Women given a combined risk assessment above 1:1000 were informed by the sonographers about the study and if informed consent was achieved they were then rescanned immediately or an appointment was made for an extra scan before gestational week 14 depending on the woman’s wish. The examination of the Doppler flows was performed by one investigator (CKE) certified by FMF to perform the ductus venosus and tricuspid flows. No recalculation of the risk for trisomy 21 was performed following assessment of the Doppler flows, but the women were informed that in case the fetus had either abnormal ductus venosus or tricuspid flow they would be offered an invasive diagnostic test (chorionic villus sample or amniocentesis) for reassurance and an additional assessment of the fetal heart at 15 and/or 21 weeks of gestation.
At Skejby University Hospital assessment of the Doppler flows are performed as part of the routine first trimester screening service in special cases and women are given written information about this before the ultrasound scan. In this centre the blood test is also performed before the nuchal scan, and thus the combined risk assessment result is available immediately after the nuchal assessment has been performed. The sonographers, who are all certified by the Fetal Medicine Foundation, aimed to assess and record the ductus and tricuspid flows on women with a combined risk assessment above 1:1000. Assessment of the ductus and tricuspid flows was performed immediately after the nuchal assessment as the calculation of the routine combined risk was done by the sonographers with the woman in the ultrasound scan room. During the study period the first trimester combined risk assessment based on the blood test and the nuchal translucency measurement was not recalculated using the two extra ultrasound markers. Data for this project was retrieved from the local Astraia database between 1st January 2009 and 31 December 2010. Follow up after flow assessment was the same as performed at Rigshospitalet.

In both centres the FMF protocol for assessment of ductus venosus flow and tricuspid flow was used. This method has previously been described by Maiz et al. and Kagan et al.\(^8,9\). We thus recorded an abnormal ductus venosus flow when finding a persistent negative a-wave (reversed flow during atrial contraction), and an abnormal tricuspid flow when regurgitation in the systole was > 60 cm/sec. Women with singleton and multiple pregnancies were initially asked to participate in the study, but it was decided to exclude multiples in the current study population. We also excluded women for whom the ultrasound markers were measured after week 14+5.
The local Departments of Clinical Genetics provided data on all prenatally and postnataally performed cytogenetic analyses in the study population. To verify that no deliveries of infants with trisomy 21 had taken place at other hospitals in Denmark a cross check was made with the Danish Central Cytogenetic Register.

We compared screening performance in the study population for two screening strategies:

1) **The first trimester combined screening strategy** based on the individual risk results provided to each participant in the study as part of their routine screening for trisomy 21 (maternal age, nuchal translucency thickness and maternal biochemical markers). Women with a risk $\geq 1:300$ were considereed screen positive.

2) **A contingent screening strategy** as outlined in figure 1 based on a combination of the first trimester combined screening results and the additional ultrasound markers. Screen positive in this contingent screening strategy was defined as women with a risk $\geq 1:50$ based on the combined screening and in addition women with a risk between $1:50-1:1000$ and either an abnormal tricuspid flow, an abnormal ductus venosus flow or both abnormal.

Comparison of the two screening strategies was done using McNemars test. Statistical evaluation and analyses were performed using the statistical software programme SPSS18. A p-value < 0.05 was considered significant.

The study was approved by the Ethic Committee System in Denmark (H-C-2009-016) and the Danish Data Protection Agency (2009-41-3430).
Results:

Study population

In the study periods a total of 15 321 first trimester risk assessments were performed in the two centres. 2330 fetuses had a risk assessment > 1:1000 (15.2%). In total 1085 women eligible for inclusion in the study had at least one of the two ultrasound markers recorded (46.6% (61% at Rigshospitalet and 38% at Skejby)). After exclusion of multiples and the 22 cases with chromosomal abnormalities other than trisomy 21 our study population consisted of 917 women/fetuses. The flow charts for inclusion for each centre are shown in figure 2a and 2b. A total of 23 cases with trisomy 21 were observed in the study population (trisomy 21 group) and 894 pregnancies with a known normal prenatal karyotype or with no registered abnormal karyotype postnatally (euploid group). The characteristics of the study population according to centre are shown in table 1.

First trimester markers

Table 2 displays the distribution of first trimester fetal nuchal translucency thickness, maternal serum free beta hCG and PAPP-A values, risk assessments and results of the tricuspid flow and ductus venosus flow in the group with trisomy 21 and in the group with normal karyotype.

Table 3 shows results of the tricuspid flow and ductus venosus flow assessments according to the combined risk assessment in the euploid group and in the trisomy 21 group, respectively.
Evaluation of two screening strategies

In our study population a total of 48.3% (443/917) had a risk at or above 1:300 based on the combined screening test where tricuspid flow and ductus venosus flow were not taken into account in the risk assessment. All 23 cases with trisomy 21 had a first trimester combined risk > 1:300, and would thus have been detected by the routine first trimester combined screening strategy (table 2).

Using a contingent screening strategy (figure 1), where screen positives are defined as having either a risk assessment > 1:50 (134 in our population) or a risk assessment between 1:51 and 1:1000 and either abnormal tricuspid or abnormal ductus flow (28 in our population) revealed a screen positive rate of 17.7% (162/917). The difference in screen positive rate between the two screening strategies (48.3% vs. 17.7%) was statistically significant (p< 0.001).

Twenty of the 23 women in the trisomy 21 group had a risk ≥ 1:50. Of the 3 women with a risk below 1:50, one had an abnormal ductus venosus flow, and would thus in a contingent screening strategy be considered screen positive, whereas the last two had normal tricuspid and normal ductus venosus flows, and would therefore in a contingent screening situation be reassured and classified as screen negative (table 3). Thus using a contingent screening strategy including tricuspid and ductus venosus flow would in our studied population lead to a decrease in detection from 100% (23/23) to 91.3% (21/23), although not statistically significant (p=0.48).
Discussion:

We found that inclusion of the markers in a contingent screening set up can reduce the number of women who are screened positive by the combined screening strategy. This is in accordance with a number of reports from similar studies8,9,11,16-18. In the majority of the published work the study populations are small sub populations often with high risk for trisomy 21. The two major studies from the Fetal Medicine Foundation however provide good evidence for the rationale of assessing additional markers in a contingent screening set up, with only about 15% of the total population needing assessment of these additional markers8,9. Kagan et al and Maiz et al. found that inclusion of the additional markers would, in a low risk population result in a detection rate of 96% for a screen positive rate of 2.6%. If our population based screen positive rate was fixed at 5%, the total size of our population would have been 8860 women (443/8860= 5%). Based on our results and using a contingent strategy, we would expect a decrease in screen positive rate to 1.8% (162/8860). The detection rate in a general population cannot be exactly derived from our study, as it only included women with high and intermediate risk. A significant difference in detection rate between the two screening strategies is however not to be expected, since the number of screen negative cases in a low risk population (risk < 1:1000) is limited. Further in our study population with risks > 1:1000 where the majority of trisomy 21 feuses are found there was no significant difference in detection rate between the two screening strategies.

There remains a need for studies on data collected as part of a routine clinical setting using the available risk algorithms. Munez Cortez et al. have recently published a prospective study evaluating a contingent screening strategy similar to our study18. They found a possible reduction in screen positive rate from 3.0 % to 1.3-1.8% without change
in the detection rate, but also concluded that in their population the contingent screening strategy was not practical, as they only managed to perform assessment of the ultrasound markers in less than half of the women with an intermediate risk mainly due to logistic problems.

It is a challenge to introduce additional ultrasound markers in a screening set up. A contingent screening strategy can restrict the examinations to be performed either in specialised centres or by few specially trained sonographers in each centre. This seems appropriate as there have been concerns about the markers’ implementation in clinical practice as a certain level of expertise is required for a proper assessment19. It has been estimated that a sonographer needs to do 80-120 examinations to be able to perform the evaluations correctly on a persistent basis20.

Our study has some limitations in the design. The study population is of limited size, and restricted to those with high and intermediate risk by the combined risk assessment. Therefore we cannot provide population based prevalence of abnormal flows. The study was performed with a different set up in the two participating centres. As one centre was strictly investigator driven, this centre provided a dataset where almost all participants had assessments of tricuspid and ductus venosus flows. The other centre represents data from a set up where assessment of the flows was performed as part of routine practice although results of the additional markers were not included in the risk assessment. In the routine screening set-up, where 30 minutes are provided to perform scanning and counselling, often only one of the flows was recorded or neither of them were assessed in the women eligible for inclusion. This could potentially have affected the results. But since our results are in agreement with results published by other groups, a possible effect does not seem...
to be of any major importance. We found a low uptake rate (38%) at Skejby Hospital as we chose to include all possible participants in the study, knowing that assessment of the flows at the beginning was done less frequently than later in the study period where a much larger proportion of eligible women had assessment of the flows performed. Again our results reflect daily practice where new initiatives are impossible to implement immediately.

We chose to use the FMF criteria in the assessment of the ductus venosus flows categorising them as either normal (positive or absent a-wave) or abnormal (reversed a-wave). Other authors have suggested assessing the ductus venosus flow as a continuous variable using the pulsatility index measurement21-23. Borell and Timmerman both found better detection rates when including the ductus venosus pulsatility index in the risk assessment compared to using the a-wave assessment. Further studies are needed to follow up on performance using this approach for assessment of the ductus venosus.

We did not in this study use the available algorithm included as part of the risk programme in the Astraia software. As stressed by Kagan et al, there is still a need for further independent validation of this algorithm8. However as we gain experience with additional large datasets it is advisable to use the developed risk calculation programmes as tricuspid flow and ductus venosus flow are dependent on factors like fetal NT, maternal weight and smoking20. Only by using these programmes, where complicated statistical adjustment can be performed, is it possible to give the pregnant women optimised individual risk assessments.
In conclusion there is increasing evidence in favour of using tricuspid flow and ductus venosus flow assessments in the screening programme for trisomy 21, and using the markers in a contingent strategy seems appropriate. As the majority of published studies have been performed in highly specialised fetal medicine centres, it is however still important to be cautious when introducing a new concept for routine use. Further studies performed in routine clinical settings which provide validation of the available algorithms are needed before we would consider using the markers routinely in our national screening programme in Denmark.
Acknowledgement

We sincerely thank all the women and their fetuses participating in the study and all sonographers performing the ultrasound scans for the project. We especially acknowledge Benedicte Stavnstrup and Mette Qvortrup Holsting for their particular help in preparing the study set up at the two centres, and the sonographers and midwife Anette Jaeger at Rigshospitalet for their help with recruitment of the participants. We would also like to thank Dr. Susanne Kjaergaard, Department of Clinical Genetics, Rigshospitalet for providing cytogenetic follow up on all participants from Rigshospitalet. In addition we thank Jan Hansen, Danish Central Cytogenetic Register for cross checking the data with national cytogenetic information.
Table 1: Characteristics of the study population

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Rigshospitalet n=483</th>
<th>Skejby n=434</th>
<th>Both centres n=917</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal age (years) [median, range]</td>
<td>33 (18-46)</td>
<td>34 (20-46)</td>
<td>34 (18-46)</td>
</tr>
<tr>
<td>Maternal weight (kg) [median, range]</td>
<td>64 (44-120)</td>
<td>66 (40-122)</td>
<td>65 (40-122)</td>
</tr>
<tr>
<td>Spontaneous conception (%)</td>
<td>407 (84.4)*</td>
<td>364 (84.0)*</td>
<td>771 (84.3)</td>
</tr>
<tr>
<td>Non smokers (%)</td>
<td>456 (94.6)*</td>
<td>409 (94.2)</td>
<td>865 (94.4)</td>
</tr>
<tr>
<td>Caucasians (%)</td>
<td>467 (96.9)*</td>
<td>407 (93.8)</td>
<td>874 (95.4)</td>
</tr>
<tr>
<td>GA at nuchal translucency scan (days) [median, range]</td>
<td>90 (78-99)</td>
<td>91 (79-99)</td>
<td>90 (78-99)</td>
</tr>
<tr>
<td>GA at measurement of flow (days) [median, range]</td>
<td>92 (78-103)</td>
<td>91 (79-99)</td>
<td>91 (78-103)</td>
</tr>
</tbody>
</table>

* one woman with missing information
Table 2: First trimester screening markers and trisomy 21 risk in the high and intermediate risk population according to karyotype

<table>
<thead>
<tr>
<th>First trimester markers</th>
<th>euploid group</th>
<th>trisomy 21 group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=894</td>
<td>n=23</td>
</tr>
<tr>
<td>Nuchal translucency measurement (mm) (mean)</td>
<td>2.1</td>
<td>3.9</td>
</tr>
<tr>
<td>PAPP-A MoM (mean)</td>
<td>0.65</td>
<td>0.43</td>
</tr>
<tr>
<td>Free beta hCG MoM (mean)</td>
<td>1.42</td>
<td>1.83</td>
</tr>
<tr>
<td>Risk assessments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 1:50 (n, %)</td>
<td>114 (12.8)</td>
<td>20 (87.0)</td>
</tr>
<tr>
<td>1:51-1:100 (n, %)</td>
<td>78 (8.7)</td>
<td>1 (4.3)</td>
</tr>
<tr>
<td>1:101-1:300 (n, %)</td>
<td>228 (25.5)</td>
<td>2 (8.7)</td>
</tr>
<tr>
<td>1:301-1:1000 (n, %)</td>
<td>474 (53.0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Additional markers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tricuspid flow measured</td>
<td>n=818</td>
<td>n=21</td>
</tr>
<tr>
<td>abnormal (n, %)</td>
<td>26 (3.2)</td>
<td>9 (42.9)</td>
</tr>
<tr>
<td>normal (n, %)</td>
<td>792 (96.8)</td>
<td>12 (57.1)</td>
</tr>
<tr>
<td>Tricuspid flow not measured or inconclusive</td>
<td>n=76</td>
<td>n=2</td>
</tr>
<tr>
<td>Ductus venous flow measured</td>
<td>n=818</td>
<td>n=20</td>
</tr>
<tr>
<td>abnormal (n, %)</td>
<td>14 (1.7)</td>
<td>5 (25.0)</td>
</tr>
<tr>
<td>normal (n, %)</td>
<td>804 (98.3)</td>
<td>15 (75.0)</td>
</tr>
<tr>
<td>Ductus venous flow not measured or inconclusive</td>
<td>n=76</td>
<td>n=3</td>
</tr>
</tbody>
</table>
Table 3: Tricuspid flow and ductus venosus flow assessment according to risk
groups in the euploid group and trisomy 21 group respectively

<table>
<thead>
<tr>
<th>Risk groups</th>
<th>TF/DV</th>
<th>TF/DV</th>
<th>TF/DV</th>
<th>TF/DV</th>
<th>TF/DV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>abn/abn</td>
<td>abn/norm</td>
<td>norm/abn</td>
<td>norm/norm</td>
<td>norm/incon</td>
</tr>
<tr>
<td>euploid group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 1:50</td>
<td>0</td>
<td>6</td>
<td>7</td>
<td>77</td>
<td>24</td>
</tr>
<tr>
<td>1:51-1:100</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>55</td>
<td>19</td>
</tr>
<tr>
<td>1:101-1:300</td>
<td>0</td>
<td>9</td>
<td>4</td>
<td>182</td>
<td>33</td>
</tr>
<tr>
<td>1:301-1:1000</td>
<td>0</td>
<td>8</td>
<td>2</td>
<td>392</td>
<td>72</td>
</tr>
<tr>
<td>trisomy 21 group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 1:50</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>1:51-1:100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1:101-1:300</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1:301-1:1000</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

TF: Tricuspid flow
DV: Ductus venosus flow
abn: abnormal
norm: normal
incon: Inconclusive or not assessed
NA: not applicable
Reference List

Figure 1: Definition of “contingent screening strategy”

Combined risk assessment (maternal age, nuchal translucency, PAPP-A and free β hCG)

Risk ≥ 1:50
- Abnormal ductus venosus flow or tricuspid flow
 - Screen positive

Risk 1:51-1:1000
- Neither abnormal ductus venosus flow nor abnormal tricuspid flow
 - Screen negative
Figure 2a:
Inclusion flow chart Copenhagen University Hospital, Rigshospitalet

5846 fetuses with a risk assessment
01 sep/2009 - 30 sep 2010

905 fetuses with a risk > 1:1000

548 fetuses where mother accepted inclusion (signed informed consent)

52 fetuses from multiple pregnancies or fetuses where markers were measured after week 14+5

496 fetuses from singleton pregnancies

13 fetuses with other abnormal karyotypes

10 fetuses with trisomy 21

473 fetuses with normal karyotype

Figure 2b:
Inclusion flow chart Aarhus University Hospital, Skejby

5475 fetuses with a risk assessment
01 Jan/2009 - 31 Dec 2010

1425 fetuses with a risk > 1:1000

537 fetuses with either a ductus venous flow or a tricuspid flow registered in the first trimester

537 excluded

94 fetuses from multiple pregnancies

443 fetuses from singleton pregnancies

94 excluded

13 fetuses with trisomy 21

421 fetuses with normal karyotype