Combined Low-Dose Pioglitazone, Flutamide, and Metformin for Women with Androgen Excess

Lourdes Ibáñez, Abel López-Bermejo, Luis del Río, Goya Enriquez, Carme Valls, and Francis de Zegher

Endocrinology Unit (L.I.), and Hormonal Laboratory (C.V.), Hospital Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain; Diabetes, Endocrinology, and Nutrition Unit (A.L.-B.), Dr. Josep Trueta Hospital, 17007 Girona, Spain; Cetir Centre Médic (L.d.R.), 08029 Barcelona, Spain; Department of Radiology (G.E.), Hospital Materno-Infantil Vall d’Hebron, Autonomous University of Barcelona, 08035 Barcelona, Spain; and Department of Woman and Child (F.d.Z.), University of Leuven, 3000 Leuven, Belgium

Context and Objective: One of the treatments for hyperinsulinemic hyperandrogenism in nonobese women is combined androgen receptor blockade (with flutamide; Flu), insulin sensitization (with metformin; Met) plus an estroprogestagen contraceptive. We tested whether adding low-dose pioglitazone (Pio; 7.5 mg/d) confers more benefit.

Setting: The study was conducted at a university hospital.

Study Population and Design: This double-blind study enrolled 38 young women with hyperinsulinemic hyperandrogenism [mean body mass index (BMI) 24 kg/m²], all of whom started on Flu (62.5 mg/d) and Met (850 mg/d) plus a transdermal estroprogestagen, each for 21 of 28 d over 6 months. Patients were randomly assigned to receive, in addition, placebo (n = 19) or Pio (n = 19; 7.5 mg/d) for the same 21 of 28 d over 6 months.

Main Outcomes: BMI, waist to hip ratio, hirsutism score, fasting endocrine-metabolic markers, body composition, abdominal fat (visceral vs. sc), and carotid intima-media thickness were measured at study start and after 6 months.

Results: PioFluMet reduced intima-media thickness more than FluMet and lowered glucose, IGF-I, and C-reactive protein more as well as the ratio of low-density lipoprotein to high-density lipoprotein cholesterol and the ratio of neutrophils to lymphocytes. PioFluMet treatment was followed by a leaner body composition and a loss of visceral fat (both P < 0.001). In the total group, the changes included not only decreases in waist to hip ratio, hirsutism score, and testosterone (all P < 0.001) but also minor drops in alanine aminotransferase, aspartate aminotransferase, γ-glutamyl transpeptidase, and lactate dehydrogenase (all P < 0.005), indicating absence of hepatotoxicity; BMI remained unchanged. Clinical side effects were not detected.

Conclusion: In this proof-of-concept study, addition of Pio to FluMet plus an estroprogestagen led to improvements in the endocrine-metabolic condition, in low-grade inflammation, in total and visceral adiposity, and in markers of cardiovascular health. (J Clin Endocrinol Metab 92: 1710–1714, 2007)

ONE OF THE treatments for hyperinsulinemic ovarian hyperandrogenism is combined androgen receptor blockade (with flutamide; Flu), insulin-sensitization (with metformin; Met), and, if needed, lifestyle changes and contraceptive measures (1–5).

Peroxisome proliferator activated receptor-γ agonists [thiazolidinediones (TZDs)] are a novel class of insulin-sensitizing agents that are used in the treatment of type 2 diabetes but have also been shown to improve the endocrine state and ovulatory performance of women with androgen excess (6–8). TZDs inhibit peripheral lipolysis and have anti-inflammatory, antioxidant, and antiprocoagulant properties (6–9). The clinical use of TZDs is limited by potential side effects including weight gain, which is mostly due to edema and/or gain of fat mass; these side effects are partly dose and host dependent (10).

Here we explored whether the addition of the TZD pioglitazone (Pio) in low dose (7.5 mg/d; commonly used doses are 4- to 6-fold higher) added benefit to the effects of low-dose flutamide-metformin (FluMet) in women with androgen excess.

Subjects and Methods

Study population

In this proof-of-concept study, the population consisted of 38 young women with hyperinsulinemic hyperandrogenism [mean ± sem; age 19.6 ± 0.3 yr; range 18–24 yr; body mass index (BMI) 23.7 ± 0.5 kg/m²; range 19.5–29.0 kg/m²; 5–12 yr after menarche; Table 1].

Inclusion criteria were hyperinsulinemia on a standard 2-h oral glucose tolerance test, defined as peak serum insulin levels greater than 150 U/ml and/or mean serum insulin greater than 84 μU/ml (11, 12); and ovarian androgen excess, as defined by: 1) hirsutism [Ferriman-Gallwey score ≥ 8 (13)]; amenorrhea (menses absent for more than 3 months), or oligomenorrhea (menstrual cycles > 45 d); 2) high serum androstenedione, total testosterone, or free androgen index [testosterone × 100/SHBG] (12); and 3) a 17-hydroxyproges- terone hyperresponse (>160 ng/dl) to a GnRH agonist (leuprolide acetate 500 μg sc) (12, 14).

Before study start, none of the patients were receiving a contraceptive
TABLE 1. Clinical, endocrine-metabolic, carotid ultrasound, body composition (by absorptiometry), and abdominal MRI indices in young women with androgen excess who received treatment with low-dose FluMet (Flu, 62.5 mg/d; Met, 850 mg/d) and a transdermal estroprogestagen and who were randomized to receive in addition either placebo (21 of 28 d; n = 19) or low-dose Pio (7.5 mg/d; 21 of 28 d; n = 19) for 6 months

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>Placebo</th>
<th>Pio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td>19.6 ± 0.3</td>
<td>19.2 ± 0.3</td>
<td>19.9 ± 0.5</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>23.7 ± 0.5</td>
<td>23.1 ± 0.6</td>
<td>24.3 ± 0.6</td>
</tr>
<tr>
<td>Fasting insulin (mU/liter)</td>
<td>11.9 ± 0.8</td>
<td>10.9 ± 1.2</td>
<td>12.8 ± 1</td>
</tr>
<tr>
<td>Fasting glucose (mg/dL)</td>
<td>94 ± 1</td>
<td>91 ± 1</td>
<td>96 ± 1</td>
</tr>
<tr>
<td>IGF-I (mg/mL)</td>
<td>299 ± 10</td>
<td>273 ± 14</td>
<td>266 ± 15</td>
</tr>
<tr>
<td>LDL to HDL ratio</td>
<td>2.1 ± 0.1</td>
<td>2.1 ± 0.1d</td>
<td>2.0 ± 0.1c</td>
</tr>
<tr>
<td>Testosterone (ng/dL)</td>
<td>83 ± 3</td>
<td>82 ± 5</td>
<td>84 ± 5</td>
</tr>
<tr>
<td>SHBG (nmol/liter)</td>
<td>36 ± 2</td>
<td>37 ± 3</td>
<td>35 ± 3</td>
</tr>
<tr>
<td>Androstenedione (ng/dL)</td>
<td>464 ± 24</td>
<td>455 ± 33</td>
<td>472 ± 37</td>
</tr>
<tr>
<td>DHEAS (µg/dL)</td>
<td>264 ± 18</td>
<td>264 ± 22</td>
<td>263 ± 29</td>
</tr>
<tr>
<td>ALT (U/liter)</td>
<td>15.1 ± 0.8</td>
<td>14.3 ± 1.1</td>
<td>15.8 ± 1.3</td>
</tr>
<tr>
<td>Hematocrit (%)</td>
<td>40.1 ± 0.4</td>
<td>40.0 ± 0.4</td>
<td>40.3 ± 0.6</td>
</tr>
<tr>
<td>Neutro to lympho ratio</td>
<td>1.9 ± 0.1</td>
<td>1.7 ± 0.1</td>
<td>2.1 ± 0.1</td>
</tr>
<tr>
<td>CRP (mg/dL)</td>
<td>3.7 ± 0.3</td>
<td>3.8 ± 0.2</td>
<td>3.7 ± 0.5</td>
</tr>
<tr>
<td>IMT (mm)</td>
<td>0.47 ± 0.01</td>
<td>0.46 ± 0.01</td>
<td>0.48 ± 0.02</td>
</tr>
<tr>
<td>Total lean mass (kg)</td>
<td>35.1 ± 0.7</td>
<td>35.0 ± 0.7</td>
<td>35.1 ± 1.1</td>
</tr>
<tr>
<td>Total fat mass (kg)</td>
<td>22.6 ± 1.1</td>
<td>21.9 ± 1.7</td>
<td>23.3 ± 1.5</td>
</tr>
<tr>
<td>Body fat fraction (%)</td>
<td>36.5 ± 1.2</td>
<td>37.6 ± 1.9</td>
<td>39.3 ± 1.4</td>
</tr>
<tr>
<td>L3 vise fat (cm²)</td>
<td>53 ± 3</td>
<td>51 ± 3</td>
<td>54 ± 5</td>
</tr>
<tr>
<td>L3 sc fat (cm²)</td>
<td>163 ± 12</td>
<td>155 ± 18</td>
<td>172 ± 16</td>
</tr>
</tbody>
</table>

Values are mean ± SEM. Indicative values from 24 asymptomatic young women are: testosterone, 31 ± 3 ng/dl; androstenedione, 156 ± 14 ng/dl; DHEAS, 125 ± 12 µg/dl (26). To convert units to SI, multiply the concentrations of testosterone by 0.03467, those of androstenedione by 0.0349, and those of DHEAS by 0.02714; divide the concentrations of SHBG by 0.0288, those of triglycerides by 88.5, and those of HDL cholesterol and LDL cholesterol by 38.7. Neutro, Neutrophil count; lympho, lymphocyte count; visc, visceral; L3, lumbar vertebra 3 level. Boldface highlights the main variables at baseline and the differences at 6 months in favor of Pio.

“Absence of significant differences between randomized subgroups at 0 months.

b P ≤ 0.001 vs. baseline (0 months).

c P < 0.05 for 0- to 6-month change (Δ) vs. placebo.

d P ≤ 0.05 vs. baseline (0 months).

e P ≤ 0.01 vs. baseline (0 months).

Indicative values from 16 asymptomatic young women: 0.39 ± 0.02 mm (19).
arteries and the bifurcation-bulb areas were scanned in multiple planes. Images were obtained from the distal portions of both common carotid arteries, 1-2 cm away from the bulb and immediately proximal to the origin of the bifurcation. The IMT of the posterior (far) wall of both common carotid arteries was measured as the distance between the junction of the lumen and intima and the junction of the media and adventitia (19, 20). IMT was on each side recorded as the mean of five measures. The intraobserver coefficient of variation (CV) was less than 10%. In line with a previous paper on IMT in women with androgen excess (19), we report IMT results of the left carotid, the slice volumes of which are similar to those on the right side (21).

Body composition

Body composition was assessed by dual-energy x-ray absorptiometry with a Lunar Prodigy and Lunar software (version 3.4/3.5; Lunar Corp., Madison, WI) (12). Total irradiation dose per assessment was 0.1 mSv; CVs for scanning precision are 2.2 and 2.6% for fat and lean mass, respectively (22).

Assessment of abdominal fat distribution

Total sc (SAT) and visceral adipose tissue (VAT) areas were measured by magnetic resonance imaging (MRI) using a whole-body multislice MRI 1.5 Tesla device (Signa LX Echo Speed Plus Excite; General Electric Healthcare, Milwaukee, WI). Subjects were placed on the platform with arms extended above the head, according to standard imaging procedures (23). All patients were scanned using a T1-weighted spin-echo sequence with 360 msec repetition time, 21 msec echo time, 40 cm field of view, and 256 × 224 matrix. To obtain abdominal MRI fat values, transverse slices of 10-mm thickness were acquired beginning at the L4-L5 intervertebral space. SAT and VAT areas were measured by fitting a spline curve to points on the border of the sc and visceral regions, selected by the same operator (L.d.R., blinded to treatment allocation). Nonfat regions within the visceral region were also outlined with a spline fit and subtracted from the total visceral region. The visceral fat region was subdivided into retroperitoneal and intraperitoneal areas using the ascending and descending colon, the psoas muscles on each side of the spine, and the top of the vessels above the vertebrae as guides for the spline fit. VAT area was calculated by subtracting the organ areas from the intraperitoneal area (24). CVs for SAT and VAT were 7.2 and 8.8%, respectively. These CVs were obtained by repeating the scan three times within 6 months in 10 young women and were calculated by dividing the sd of the estimate from linear regression analysis by the mean of the measurements.

Assays and statistics

Neutrophil and lymphocyte counts were assessed by cell counter (ABX Pentra 120; ABX Diagnostics, Montpellier, France) (25). Serum glucose was measured by the glucose oxidase method. Immunoreactive insulin was assayed by microparticle enzyme immunonasay (Imx; Abbott Diagnostics, Santa Clara, CA); the mean intra- and interassay CVs were 4.7 and 7.2%, respectively. Serum testosterone, 17-hydroxyprogesterone hyperresponse, DHEAS, androstenedione, and SHBG were measured by immunoluminometry (IMMULITE 2000; Diagnostic Products, Los Angeles, CA). All methods had intra- and interassay CVs between 4 and 8% within the relevant concentration ranges. CRP was measured by a highly sensitive method (Architect c8000; Abbott, Wiesbaden, Germany) with intra- and interassay CVs less than 2%; the detection limit was 0.1 mg/liter. Serum samples were stored at −20°C until assay. Statistical analyses were performed with SPSS 12.0 (SPSS Inc., Chicago, IL). For uniformity, results are expressed as mean ± sem. Non-Gaussian variables were mathematically transformed to improve symmetry before statistical analyses. Two-sided t tests were used for comparisons between groups, and for paired samples within groups; significance level was set at P < 0.05.

Results

Table 1 summarizes the results in both subgroups at baseline and after 6 months. The placebo subgroup confirmed the known effects of intermittent (21 of 28 d) therapy with low-dose FluMet plus a transdermal estrogenprogestagen (26), extended those findings over time (from 3 to 6 months), and disclosed that hematocrit and circulating IGF-I are lowered (P < 0.001), that serum ALT falls reassuringly (P < 0.05), and that carotid IMT is reduced (P < 0.001). None of the adiposity markers, however, changed detectably within 6 months.

Pio addition to FluMet was followed by additional benefits such as a leaner body composition and a loss of visceral fat (baseline vs. 6 months; P < 0.001 for both), a further reduction of IMT and body adiposity (PioFluMet vs. FluMet; P < 0.05 for 0- to 6-month changes in both markers). Other effects of Pio addition were a lowering of fasting glycemia and LDL to HDL ratio as well as further reductions of circulating IGF-I and inflammatory markers such as CRP and neutrophil to lymphocyte ratio (PioFluMet vs. FluMet; P < 0.05 for 0- to 6-month changes in all these indices), whereas the reassuring ALT drop was maintained (Fig. 1).

In the total study population, 0- to 6-month changes included not only decreases in insulin, glucose, IGF-I, visceral fat, WHR, hirsutism score, testosterone, LDL to HDL ratio, neutrophil to lymphocyte ratio, CRP, and IMT (Fig. 1) but also minor drops in serum ALT, AST, γ-GT, and lactate dehydrogenase (all P <

Fig. 1. Changes (0–6 months) in endocrine-metabolic indices, visceral fat, inflammation markers, and carotid IMT of young women with androgen excess treated with low-dose FluMet (21 of 28 d), a transdermal estroprogestagen (21 of 28 d), and either placebo or low-dose Pio (7.5 mg/d; 21 of 28 d). Changes are expressed as SD scores, calculated by dividing the individual values by the corresponding baseline sd in the study subjects. Plots represent means ± 95% confidence intervals. *, P < 0.05; **, P < 0.01; and ***, P < 0.001 for 0- to 6-month changes within the total group. #, P < 0.05 for differences in 0- to 6-month changes between subgroups. Visc Fat, Visceral fat section at lumbar vertebra 3 level; Testo, testosterone; Neutro, neutrophil count; Lympho, lymphocyte count.
reassuringly accompanied by minor but consistent drops in atherogenesis (38) or the hepatotoxicity of high-dose Flu (39). Elevations, which have been attributed to nonalcoholic steatosis (37).

Circulating androgens and thus in androgen-driven hematopoiesis are thought to be mainly attributable to concomitant drops in cirrhotic or without Pio addition (36). These falls in hematocrit are thought to be associated with a robust weight gain that is mainly ascribed to gain of SC fat, which, in turn, seems to develop despite augmented GH secretion and decrease maintained serum levels of IGF-I (32–34). Here we found that the addition of a much lower Pio dose to FluMet plus an estroprogestagen is in hyperandrogenic women, Pio therapy (30 mg/d) is known to be associated with a partial weight loss (18, 26, 40–42). Second, because the combination of Pio and Flu is unprecedented, the respective doses were daily given with a maximal intradiem interval (morning vs. evening).

Third, to avoid a hepatic first-pass effect of orally ingested estroprogestagens, we used a transdermal contraceptive that was previously studied in a combination with FluMet (26). Finally, there was a complete medication-free week after every 3-wk episode on estroprogestagen plus either FluMet or PioFluMet.

The additive effects of low-dose Pio, as detected within 6 months in this relatively small study population, may be statistically subtle, but they were achieved on top of striking changes (P < 0.001 for IGF-I, CRP, and IMT) obtained in the placebo group, which actually received one of the most effective treatments known so far. For some indices, low-dose Pio amplified the benefits of Flu-Met (plus an estroprogestagen) by another approximately 50% to approximately 100%; integrated changes of such magnitude are unprecedented in young women with androgen excess.

In this proof-of-concept study, the addition of low-dose Pio to FluMet plus an estroprogestagen led to improvements in the endocrine-metabolic condition, low-grade inflammation, total and visceral adiposity, and markers of cardiovascular health. Larger trials of longer duration are warranted to assess the long-term efficacy and safety of low-dose PioFluMet therapy in women with androgen excess.

Acknowledgments

We thankMontserrat Gallart and Marta Díaz for hormone measurements.

Address all correspondence and requests for reprints to: Lourdes Ibañez, M.D., Ph.D., Endocrinology Unit, Hospital Sant Joan de Déu, University of Barcelona, Passeig de Sant Juan de Déu, 2, 08905 Esplugues, Barcelona, Spain. E-mail: libanez@hsjdbcn.org.

Authors’ Disclosures: L.I., A.L.-B., L.d.R., G.E., C.V., and F.d.Z. have nothing to declare. F.d.Z. is a Clinical Investigator of the Fund for Scientific Research, Flanders, Belgium.

References

12. Ibañez L, de Zegher F 2004 Ethinylestradiol-drospirenone, flutamide-metformin, or both for adolescents and young women with hyperinsulinemic hyperandrogenism: comparison of effects on adipokines and body adiposity. J Clin Endocrinol Metab 89:1592–1597

JCEM is published monthly by The Endocrine Society (http://www.endo-society.org), the foremost professional society serving the endocrine community.